Keras深度学习实战(14)——从零开始实现R-CNN目标检测

本文介绍了从零开始使用Keras实现R-CNN目标检测模型的过程,包括数据集分析、模型分析、非极大值抑制算法的详细步骤,以及如何在Keras中构建和训练目标检测模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

R-CNN (Regions with CNN features),是 R-CNN 系列目标检测算法的初代模型,其将“深度学习”和传统的“计算机视觉”的相结合,基于候选区域 (Region proposal) 检测目标对象。
《目标检测基础》中,我们已经了解了候选区域的概念如何从图像中生成候选区域。在本节中,我们将利用候选区域来完成图像中目标对象的检测和定位。

1. R-CNN 目标检测模型

1.1 数据集分析

为了训练模型,我们下载并使用数据集 VOCtrainval_11-May-2012.tar,其中包含了图像中的对象以及对象相应的边界框,是目标检测中常用的数据集之一。
我们首先分析数据集

评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值