做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
在中国的dataframe上再根据省份字段分组即可。
如果下面代码中第9行是groupsByProvinceInChina[‘Brand’].count() 得到的会是一个Series,要转换成DataFrame在Brand外面再嵌套一层中括号即可。
使用sort_value()进行排序是为了后面作图能直接反映最大值和最小值。
CN_df = star_df[star_df[‘Country’] == ‘CN’] # 中国星巴克信息
print(CN_df.info())
groupsByProvinceInChina = CN_df.groupby(by=‘State/Province’)
for province,data in groupsByProvinceInChina:
print(province)
provinceCount = \
groupsByProvinceInChina[[‘Brand’]].count().sort_values(by=‘Brand’, ascending=True)
在原始数据中省份字段使用的是各省份数字代码。在作图时可以使用特定的函数将数字代码一一转换为省份名。
(博主提取省份数据时发现省份代码91,92在网上找不到资料,转换省份名的时候导致数量不一样作图失败,所以放弃了,希望有知道的读者可以在评论区评论)
===============================================================
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
def ProvinceTransfer(codeList):
‘’’
返回中国省份列表
:param codeList: 省份数字代码,可以是数值类型或字符串类型
:return: 省份列表
‘’’
resList = []
for item in codeList:
if item == 11 or item == ‘11’:
resList.append(‘北京’)
if item == 12 or item == ‘12’:
resList.append(‘天津’)
if item == 13 or item == ‘13’:
resList.append(‘河北’)
if item == 14 or item == ‘14’:
resList.append(‘山西’)
if item == 15 or item == ‘15’:
resList.append(‘内蒙古’)
if item == 21 or item == ‘21’:
resList.append(‘辽宁’)
if item == 22 or item == ‘22’:
resList.append(‘吉林’)
if item == 23 or item == ‘23’:
resList.append(‘黑龙江’)
if item == 31 or item == ‘31’:
resList.append(‘上海’)
if item == 32 or item == ‘32’:
resList.append(‘江苏’)
if item == 33 or item == ‘33’:
resList.append(‘浙江’)
if item == 34 or item == ‘34’:
resList.append(‘安徽’)
if item == 35 or item == ‘35’:
resList.append(‘福建’)
if item == 36 or item == ‘36’:
resList.append(‘江西’)
if item == 37 or item == ‘37’:
resList.append(‘山东’)
if item == 41 or item == ‘41’:
resList.append(‘河南’)
if item == 42 or item == ‘42’:
resList.append(‘湖北’)
if item == 43 or item == ‘43’:
resList.append(‘湖南’)
if item == 44 or item == ‘44’:
resList.append(‘广东’)
if item == 45 or item == ‘45’:
resList.append(‘广西’)
if item == 46 or item == ‘46’:
resList.append(‘海南’)
if item == 50 or item == ‘50’:
resList.append(‘重庆’)
if item == 51 or item == ‘51’:
resList.append(‘四川’)
if item == 52 or item == ‘52’:
resList.append(‘贵州’)
if item == 53 or item == ‘53’:
resList.append(‘云南’)
if item == 54 or item == ‘54’:
resList.append(‘西藏’)
if item == 61 or item == ‘61’:
resList.append(‘陕西’)
if item == 62 or item == ‘62’:
resList.append(‘甘肃’)
if item == 63 or item == ‘63’:
resList.append(‘青海’)
if item == 64 or item == ‘64’:
resList.append(‘宁夏’)
if item == 65 or item == ‘65’:
resList.append(‘新疆’)
if item == 71 or item == ‘71’:
resList.append(‘台湾省’)
if item == 81 or item == ‘81’:
resList.append(‘香港’)
if item == 82 or item == ‘82’:
resList.append(‘澳门’)
return resList
pd.set_option(‘display.max_columns’, None)
pd.set_option(‘display.max_rows’, None)
dataPath = ‘dataFiles/Starbucks-Locations.csv’
star_df = pd.read_csv(dataPath)
print(star_df.head(1)) # 打印第一行查看字段信息
print(star_df.info())
按国家分类(pandas分组方法)
groupsByCountry = star_df.groupby(by=‘Country’)
print(groupsByCountry)
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!