最全数据分析案例:全球星巴克数量统计,spring的生命周期面试题

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

(二)统计中国各省份星巴克数量


在中国的dataframe上再根据省份字段分组即可。

如果下面代码中第9行是groupsByProvinceInChina[‘Brand’].count() 得到的会是一个Series,要转换成DataFrame在Brand外面再嵌套一层中括号即可。

使用sort_value()进行排序是为了后面作图能直接反映最大值和最小值。

CN_df = star_df[star_df[‘Country’] == ‘CN’] # 中国星巴克信息

print(CN_df.info())

groupsByProvinceInChina = CN_df.groupby(by=‘State/Province’)

for province,data in groupsByProvinceInChina:

print(province)

provinceCount = \

groupsByProvinceInChina[[‘Brand’]].count().sort_values(by=‘Brand’, ascending=True)

(三)省份代码


在原始数据中省份字段使用的是各省份数字代码。在作图时可以使用特定的函数将数字代码一一转换为省份名。

(博主提取省份数据时发现省份代码91,92在网上找不到资料,转换省份名的时候导致数量不一样作图失败,所以放弃了,希望有知道的读者可以在评论区评论)

Code

===============================================================

import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

def ProvinceTransfer(codeList):

‘’’

返回中国省份列表

:param codeList: 省份数字代码,可以是数值类型或字符串类型

:return: 省份列表

‘’’

resList = []

for item in codeList:

if item == 11 or item == ‘11’:

resList.append(‘北京’)

if item == 12 or item == ‘12’:

resList.append(‘天津’)

if item == 13 or item == ‘13’:

resList.append(‘河北’)

if item == 14 or item == ‘14’:

resList.append(‘山西’)

if item == 15 or item == ‘15’:

resList.append(‘内蒙古’)

if item == 21 or item == ‘21’:

resList.append(‘辽宁’)

if item == 22 or item == ‘22’:

resList.append(‘吉林’)

if item == 23 or item == ‘23’:

resList.append(‘黑龙江’)

if item == 31 or item == ‘31’:

resList.append(‘上海’)

if item == 32 or item == ‘32’:

resList.append(‘江苏’)

if item == 33 or item == ‘33’:

resList.append(‘浙江’)

if item == 34 or item == ‘34’:

resList.append(‘安徽’)

if item == 35 or item == ‘35’:

resList.append(‘福建’)

if item == 36 or item == ‘36’:

resList.append(‘江西’)

if item == 37 or item == ‘37’:

resList.append(‘山东’)

if item == 41 or item == ‘41’:

resList.append(‘河南’)

if item == 42 or item == ‘42’:

resList.append(‘湖北’)

if item == 43 or item == ‘43’:

resList.append(‘湖南’)

if item == 44 or item == ‘44’:

resList.append(‘广东’)

if item == 45 or item == ‘45’:

resList.append(‘广西’)

if item == 46 or item == ‘46’:

resList.append(‘海南’)

if item == 50 or item == ‘50’:

resList.append(‘重庆’)

if item == 51 or item == ‘51’:

resList.append(‘四川’)

if item == 52 or item == ‘52’:

resList.append(‘贵州’)

if item == 53 or item == ‘53’:

resList.append(‘云南’)

if item == 54 or item == ‘54’:

resList.append(‘西藏’)

if item == 61 or item == ‘61’:

resList.append(‘陕西’)

if item == 62 or item == ‘62’:

resList.append(‘甘肃’)

if item == 63 or item == ‘63’:

resList.append(‘青海’)

if item == 64 or item == ‘64’:

resList.append(‘宁夏’)

if item == 65 or item == ‘65’:

resList.append(‘新疆’)

if item == 71 or item == ‘71’:

resList.append(‘台湾省’)

if item == 81 or item == ‘81’:

resList.append(‘香港’)

if item == 82 or item == ‘82’:

resList.append(‘澳门’)

return resList

pd.set_option(‘display.max_columns’, None)

pd.set_option(‘display.max_rows’, None)

dataPath = ‘dataFiles/Starbucks-Locations.csv’

star_df = pd.read_csv(dataPath)

print(star_df.head(1)) # 打印第一行查看字段信息

print(star_df.info())

按国家分类(pandas分组方法)

groupsByCountry = star_df.groupby(by=‘Country’)

print(groupsByCountry)

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值