网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
每个Broker启动时,都会创建对应分区状态机和副本状态机实例,但只有Controller所在的Broker才会启动它们。若Controller变更到其他Broker:
- 老Controller所在Broker要调用这些状态机的shutdown方法关闭它们
- 新Controller所在的Broker调用状态机的startup方法启动它们
4 分区状态
PartitionState定义了分区的状态空间及流转规则,以OnlinePartition态为例:
分区状态枚举
- NewPartition:分区被创建后被设置成这个状态,表明是全新的分区对象,Kafka认为是“未初始化”的初生牛犊子,因此不能竞选Leader
- OnlinePartition:分区正式提供服务时所处态
- OfflinePartition:分区下线后所处态
- NonExistentPartition:分区被删除,并且从分区状态机移除后所处态
分区状态转换规则
OnlinePartition和OfflinePartition都有一根箭头指向自己,表明OnlinePartition切换到OnlinePartition的操作是允许的。当分区Leader选举发生的时候,就可能出现。
5 分区Leader选举场景
分区Leader选举,PartitionStateMachine的特有功能。每个分区都得选举出Leader,才能正常提供服务。因此,对于分区,Leader副本很重要。所以必须熟悉Leader选举的流程实现。
Kafka定义了哪些推选策略,何时执行Leader选举?
5.1 PartitionLeaderElectionStrategy
分区Leader选举:为Kafka主题的某个分区推选Leader副本,当前分区Leader选举有如下场景:
5.2 PartitionLeaderElectionAlgorithms
针对以上场景,分区状态机的PartitionLeaderElectionAlgorithms定义如下方法分别负责为每种场景选举Leader副本:
- offlinePartitionLeaderElection;
- reassignPartitionLeaderElection;
- preferredReplicaPartitionLeaderElection;
- controlledShutdownPartitionLeaderElection。
其中属offlinePartitionLeaderElection最复杂:
该方法接收如下参数:
1.assignments
分区的副本列表:Assigned Replicas,AR。创建主题后,使用kafka-topics脚本查看主题时,可见Replicas列数据:主题下每个分区的AR。assignments参数类型是Seq[Int],说明AR有序,不一定和ISR顺序相同
2.isr
保存了分区所有与Leader副本保持同步的副本列表。Leader副本自己也在ISR中。作为Seq[Int]类型的变量,isr自身也是有顺序的。
3.liveReplicas
保存该分区下所有存活状态的副本。
- 怎知副本是否存活?
根据Controller元数据缓存中的数据。所有在运行中的Broker上的副本,都认为是活的。
4.uncleanLeaderElectionEnabled
默认只要不是由AdminClient发起的Leader选举,该参数为false:Kafka不允许执行Unclean Leader选举。
Unclean Leader选举:在ISR列表为空时,Kafka选择一个非ISR副本作为新Leader。由于存在丢数据风险,Broker端参数unclean.leader.election.enable默认值为false,禁掉Unclean Leader选举。
2.4.0.0版本正式支持在AdminClient端为给定分区选举Leader:若Leader选举由AdminClient触发,默认开启Unclean Leader选举。
5.3 具体流程
顺序搜索AR列表,将第一个满足如下条件的副本作为新Leader返回:
- 该副本为存活状态,即副本所在Broker依然在运行中
- 该副本在ISR列表
若找不到这样的副本,检查是否开启Unclean Leader选举:
- 若开启,则降低标准,只要满足上面第一个条件
- 若未开启,则本次Leader选举失败,无新Leader被选出
其它选举策略几乎相同,都是从AR或给定副本列表中寻找存活状态的ISR副本。
所以Kafka为分区选举Leader就是:AR列表(或给定副本列表)中首个处于存活状态,且在ISR列表的副本。
6 分区状态转换
PartitionSM的工作原理。
handleStateChanges
入口方法签名:
- 调用doHandleStateChanges执行分区状态转换
包含确认哪些Broker属于下一步的相关Broker,给Broker发送哪些请求
2. Controller给相关Broker发送请求,告知它们这些分区的状态变更
重点还是
doHandleStateChanges
- 首先状态初始化,即在方法调用时,不在【元数据缓存】中的所有分区的状态被初始化为NonExistentPartition
- 然后,检查哪些分区执行的状态转换非法&&记录错误日志
- 据合法状态转换的分区列表,进入case分支。分区状态只有4个,其case分支代码远比ReplicaSM的简单,且只有OnlinePartition分支较复杂,其余3路仅是将分区状态置成目标状态
重点看OnlinePartition分支:
- 初始化NewPartition态的分区,即在zk中,创建并写入分区节点数据。
节点位置:/brokers/topics/<topic>/partitions/<partition>
,每个节点都要包含分区的Leader和ISR。
Leader和ISR的确定规则:
* 选择存活副本列表的第一个副本作为Leader
* 选择存活副本列表作为ISR详见initializeLeaderAndIsrForPartitions:
- 为具备Leader选举资格的分区推选Leader,调用electLeaderForPartitions实现:不断尝试为多个分区选举Leader,直到所有分区都成功选出Leader。
选举Leader的核心代码:
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
1715779326310)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新