不管你信不信,2025年是大学生就业历史上的分水岭!

新年复工第一天,播妞要先说一个扎心事实:2025届全国普通高校毕业生数量首次突破1222万人,创下近十年新高。

这意味着什么?**2025年就业形势比往年更加严峻,堪称“灾难片”!**根据模型推演,在2040年之前,大学生“就业难”问题会一直存在。

怎么办?难道大学生只能“躺平啃老”?未来5年哪些行业前景广阔?拥有哪些技能将在新一轮竞争中脱颖而出?这些大方向,你一定要知道!👇👇👇

《2025年未来就业报告》发布

未来5年就业风口,出现了!

世界经济论坛最新发布《2025年未来就业报告》,报告汇聚1000多家全球领先雇主的观点,深度剖析了未来五年将重塑行业的五大宏观趋势及其对就业、技能和劳动力转型的影响。

无论是即将步入职场的大学生,还是在职场摸爬滚打多年的职场人,这份报告都极具参考价值,或将深刻影响未来的职业选择和发展。

以下为报告核心亮点:

2025-2030年就业市场展望

报告预测,到2030年,全球将新增1.7亿个工作岗位,同时淘汰9200万个岗位,实现净增长7800万个就业岗位。同时,有10.9亿个就业岗位在不断演变的劳动力市场中得以延续。

增长最快的职业集中在技术、绿色转型和医疗领域,例如:

√ 技术类岗位:大数据专家、AI与机器学习专家、软件开发人员等。

√ 绿色转型类岗位:可再生能源工程师、环境工程师、电动及自动驾驶汽车专家等。

√ 医疗类岗位:护理人员、社会工作者和辅导员。

2025-2030增长和减少速度最快的岗位

报告显示,到2030年,技术革新如人工智能、机器人技术的进步以及数字接入的增加,将强力驱动相应就业岗位的大幅增长,其中大数据专家、金融科技工程师、人工智能和机器学习专家等岗位增速位居榜首。

相反地,岗位缩减速度TOP10则集中在重复性高、技术含量低的岗位。这意味着,未来两极分化严重,跟紧时代的技术大佬依然很吃香,而缺乏竞争力的人员将在低端岗位越来越卷。

▲ 图源《2025年未来就业报告》,如侵删

未来五年需求增长最快的十大技能

报告指出,市场变迁导致技能需求更新,企业员工需要接受培训和再教育以适应新的职位要求。未来,**人工智能、大数据和网络、网络空间安全等技能需求预计增长最快,**但分析思维、认知技能、韧性等依然是关键的核心技能。这两类技能的组合将日益成为众多工作岗位的标配。

▲ 图源《2025年未来就业报告》,如侵删

2025年

互联网依旧是就业“黄金赛道”!

根据《2025年未来就业报告》,我们可以清晰地捕捉到两大趋势:

①互联网技术类岗位,依旧是未来社会发展的坚实支撑;

②具备AI技能的专业人才正成为就业市场的“宠儿”。

由此,一个不争的事实浮出水面:2025及未来,互联网行业依然是就业的“黄金赛道”!

虽然市场依旧存在着互联网的负面声音,但从当前的行业形势来看,用“不行了”形容一个利润额千亿级别的产业,显然有失偏颇。

工信部数据显示,我国互联网业务收入一直保持平稳增长趋势。2024年1-11月,我国规模以上互联网和相关服务企业累计实现**互联网业务收入16186亿元,**利润总额达1434亿元。

▲ 图源工信部数据,如侵删

的确,互联网行业不再像过去5年、10年那样疯狂扩张,但它仍然保持螺旋式上升的趋势。如今互联网行业不再是局限于信息互联网和行业互联网范畴的互联网,而是包罗万象,扩展至新能源、人工智能、芯片制造、数字化、硬科技等多个领域。

特别是近两年,人工智能、云计算、大数据、虚拟现实、数字孪生等新兴技术的崛起,不仅为互联网注入了新的活力,更推动了**产业数字化、网络化、智能化转型升级的纵深发展,**进而带动相关领域人才需求的持续攀升。

以人工智能为例,随着技术的不断发展,自然语言处理、深度学习、机器人算法等岗位的招聘需求井喷式增长。

工信部数据显示,**人工智能领域各技术方向的岗位人才供需比均低于0.4,**人才缺口巨大。这一现象直接推动了薪资水平的飙升,在新发应届生岗位平均月薪TOP10中,人工智能相关岗位占据8个!

▲ 图源《2024年度人才迁徙报告》,如侵删

窥一斑而见全豹,互联网行业机遇与挑战并存,更多的机会可能才刚刚开始。

对于程序员而言,所谓的“互联网寒冬”,**影响的只有那些没有技术壁垒的初级程序员。**如果未来想在互联网行业更加游刃有余,首先就是要加强核心竞争力,提高自己的不可替代性!

黑客/网络安全学习路线

今天只要你给我的文章点赞,我私藏的网安学习资料一样免费共享给你们,来看看有哪些东西。

网络安全学习资源分享:

最后给大家分享我自己学习的一份全套的网络安全学习资料,希望对想学习 网络安全的小伙伴们有帮助!

零基础入门

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

读者福利 | CSDN大礼包:《网络安全入门&进阶学习资源包》免费分享 (安全链接,放心点击)

在这里插入图片描述

1.网络安全学习路线图

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

在这里插入图片描述

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己录的网安视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本【点击领取技术文档】

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

技术文档也是我自己整理的,包括我参加大型网安行动、CTF和挖SRC漏洞的经验和技术要点,电子书也有200多本【点击领取书籍】

在这里插入图片描述

4.工具包、面试题和源码

“工欲善其事必先利其器”我为大家总结出了最受欢迎的几十款款黑客工具。涉及范围主要集中在 信息收集、Android黑客工具、自动化工具、网络钓鱼等,感兴趣的同学不容错过。

在这里插入图片描述

最后就是我这几年整理的网安方面的面试题,如果你是要找网安方面的工作,它们绝对能帮你大忙。

这些题目都是大家在面试深信服、奇安信、腾讯或者其它大厂面试时经常遇到的,如果大家有好的题目或者好的见解欢迎分享。

参考解析:深信服官网、奇安信官网、Freebuf、csdn等

内容特点:条理清晰,含图像化表示更加易懂。

内容概要:包括 内网、操作系统、协议、渗透测试、安服、漏洞、注入、XSS、CSRF、SSRF、文件上传、文件下载、文件包含、XXE、逻辑漏洞、工具、SQLmap、NMAP、BP、MSF…

在这里插入图片描述

在这里插入图片描述

读者福利 | CSDN大礼包:《网络安全入门&进阶学习资源包》免费分享 (安全链接,放心点击)

<think>好的,用户想了解分水岭算法中的淹没过程。我需要先回忆分水岭算法的基本原理,然后重点解释淹没过程的概念和实现原理。 首先,分水岭算法是基于图像形态学的分割方法,灵感来源于地理上的分水岭。图像中的灰度值被看作地形,高灰度值对应山峰,低灰度值对应山谷。算法目标是将图像分成不同的区域。 淹没过程是分水岭算法的核心。想象雨水逐渐填满山谷,当水位上升到不同山谷即将合并时,修建堤坝阻止合并,这些堤坝就是分割边界。具体步骤可能包括:预处理(如边缘检测或距离变换)、标记区域、水位上升模拟、堤坝生成。 实现原理方面,可能需要使用距离变换来获取对象的骨架,然后用标记确定前景和背景。OpenCV中的分水岭函数需要用户提供标记,标记中的每个区域代表一个山谷,算法模拟水位上升并标记边界。 需要注意的问题包括过分割,通常通过预处理和标记控制来改善。淹没过程在OpenCV中可能通过队列或优先级队列实现,按像素灰度值处理,类似广度优先搜索。 需要确保回答中正确引用相关引用,比如引用[4]提到的距离变换API,可能在预处理中使用。同时,用户的问题涉及分水岭算法,虽然引用中没有直接提到分水岭,但距离变换是预处理的一部分,可以关联起来。 最后,生成相关问题,帮助用户深入理解,比如应用场景、过分割原因、与区域生长的比较,以及OpenCV的实现步骤。</think>分水岭算法中的淹没过程是图像分割的关键步骤,其核心思想是将图像灰度值模拟为地形地貌,通过水位上升时"修建堤坝"实现区域分割。以下是具体分析: ### 分水岭算法基本原理 将数字图像视为三维地形图: - 高灰度值区域:对应地形中的山峰 - 低灰度值区域:对应地形中的盆地 - 算法目标:找到不同盆地的分界线(分水岭) ### 淹没过程详解 1. **预处理阶段**(需配合距离变换): - 使用$distanceTransform$函数计算二值图像的欧氏距离变换[^4] - 生成的距离图作为淹没过程的输入地形 $$ D(x,y) = \min_{(i,j)\in B} \sqrt{(x-i)^2 + (y-j)^2} $$ 其中$B$为背景像素集合 2. **标记生成**: - 确定前景标记(目标区域) - 确定背景标记(非目标区域) - 未标记区域作为待淹没区域 3. **水位上升模拟**: - 从最低灰度级开始注水 - 水位逐渐上升时: - 当不同标记区域的水域即将合并时 - 立即在接触点建立分水岭堤坝 - 最终所有堤坝构成完整分割边界 ### OpenCV实现要点 ```python import cv2 import numpy as np # 读取图像并预处理 img = cv2.imread('coins.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) # 距离变换 dist_transform = cv2.distanceTransform(thresh, cv2.DIST_L2, 3) # 生成标记 ret, markers = cv2.connectedComponents(np.uint8(dist_transform > 0.7*dist_transform.max())) markers += 1 # 背景标记设为1 markers[thresh==255] = 0 # 未知区域设为0 # 执行分水岭算法 cv2.watershed(img, markers) ``` ### 关键特性 1. **过分割问题**:原始算法容易产生过度分割(如将单个硬币分割为多个区域),需通过预处理和标记控制 2. **拓扑保持**:分割边界始终保持连续闭合曲线 3. **并行性**:不同盆地可独立进行淹没过程 : 距离变换API生成的骨架图是分水岭算法的重要输入,直接影响淹没过程的起始标记位置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值