网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
结果:
对不同城市绘制箱线图:
代码:
p2<-bf %>% ggplot(aes(x=City_Category,y=Purchase))+geom_boxplot()
p2
结果:
- 对消费者的婚姻状况绘制箱线图,我们分为男女两个方面:
代码:
p3<-bf %>% ggplot(aes(x=as.factor(Marital_Status),y=Purchase,fill=Gender))+geom_boxplot()
p3
结果:
从上面的3个箱形图中我们可以看出,男人在购物上花的钱比女人多。无论是是否结婚还是来自于不同城市,而且Age,Stay_In_Current_City_Years这两个变量本来应该保存成数字变量但是原始数据是使用字符型变量,所以需要我们进行进一步的处理。
统计年龄和所在城市的居住年份总数
我们使用年龄范围的平均值来代表每个阶段,可以看到各个年龄段出现的次数。然后我们根据Stay_In_Current_City_Years来统计消费者在当前城市停留最多的年数。
代码:
根据结果,我们可以发现:中年人(35-55岁)的比例最多;年轻人支付较少;就城市停留年数的统计数据看,停留一年的占大多数。
产品类别信息统计
首先我们通过用 table() 函数统计因子各水平的出现次数。可以看到:
共有18种产品,每种产品出现的次数各不相同。
针对不同的产品,我们通过对购买产品的数量、性别对产品的影响、价格对产品的影响三方面对数据进行分析,结果如下:
- 消费者最喜欢的产品类别:
代码:
p1<-bf %>% group_by(Product_Category_1) %>% count() %>% ggplot(aes(x=reorder(Product_Category_1,n),y=n))+geom_col(aes(factor(Product_Category_1)))+labs(x=“”,y=“”,title=“消费者最喜欢的产品类别”)
p1
结果:
- 不同性别各产品类别的喜爱程度
代码:
p2<-bf %>% group_by(Gender,Product_Category_1) %>% count() %>% ggplot(aes(x=as.factor(Product_Category_1),y=n,fill=as.factor(Gender)))+geom_bar(stat=“identity”,position=“dodge”)+labs(x=“”,y=“”,fill=“gender”,title=“不同性别各产品类别的喜爱程度”)
p2
结果:
- 各类别平均消费价格
代码:
p3<-bf %>% ggplot(aes(x=reorder(as.factor(Product_Category_1),Purchase),y=Purchase))+geom_point()+ggtitle(“各类别平均消费价格”)
p3
结果:
通过图像我们可以看到,消费者最喜欢的产品前三分别是5、1、8,男性消费者明显比女性多。
性别统计
由于每行代表一个单独的事务,我们必须首先按User_ID对数据进行分组以删除重复项。我们选择用户编号和性别两项,按照用户编号进行分组,运用distinct()去除重复项。
代码:
bf2 <- read.csv(“E:/data.csv”)
bf2_gender <- bf2 %>%
select(User_ID, Gender) %>%
group_by(User_ID) %>%
distinct()
head(bf2_gender)
summary(bf2_gender$Gender)
options(scipen=10000) # To remove scientific numbering
gender_ch <- ggplot(data = bf2_gender) +
geom_bar(mapping = aes(x = Gender, y = …count…)) +
labs(title = ‘性别分布’)
gender_ch
结果:
可以看到,在本次数据中,男性购买人数比女性购买人数多。
性别相关平均支出金额
代码:
total_P <- bf2%>%
select(User_ID, Gender, Purchase) %>%
group_by(User_ID) %>%
arrange(User_ID) %>%
summarise(Total_P= sum(Purchase))
user_G <- bf2%>%
select(User_ID, Gender) %>%
group_by(User_ID) %>%
arrange(User_ID) %>%
distinct()
head(user_G)
head(total_P)
user_P_G<-full_join(total_P, user_G, by = “User_ID”)
head(user_P_G)
avg_spending_G <- user_P_G %>%
group_by(Gender) %>%
summarize(Purchase = sum(as.numeric(Total_P)),
Count = n(),
Average = Purchase/Count)
head(avg_spending_G)
avg_gender <- ggplot(data =avg_spending_G) +
geom_bar(mapping = aes(x = Gender, y = Average, fill = Gender), stat = ‘identity’) +
labs(title = ‘不同性别的平均消费’) +
scale_fill_brewer(palette = ‘PuBuGn’)
avg_gender
结果:
通过结果可以发现,即使女性购物者购买的商品少于男性,但他们的购买量几乎与男性购物者一样多。但是也要考虑规模因素,因为女性平均仍然比男性少花费25万。
畅销品
代码:
total_purchase= bf2 %>%
group_by(User_ID) %>%
summarise(Purchase_Amount= sum(Purchase))
top_sellers <- bf2 %>%
count(Product_ID, sort = TRUE)
best_spro<- bf2[bf2$Product_ID == ‘P00265242’, ]
gender_bs<- ggplot(data =best_spro) +
geom_bar(mapping = aes(x = Gender, y = …count…)) +
labs(title = ‘消费者性别(畅销品)’) +
scale_fill_brewer(palette = ‘PuBuGn’)
print(gender_bs)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
nder_bs)
[外链图片转存中…(img-tzNtvb3R-1715251075874)]
[外链图片转存中…(img-ZaJQwS2N-1715251075874)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!