2024年大数据最新【秋招面试】面试准备(一面准备)_秋招面试是什么样(3),2024年最新分享我在大数据开发开发中走的一些弯路

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

举例几个hive常用函数?

标准聚合函数:Count()、Sum()、Min()、MAX()或AVG(); Rank;
Dense_Rank;
Row_number;
Cume_dist;
Percent_Rank;
NTile;
Lead;
Lag;
First_Value;
Last_Value;

ClickHouse和Hbase有什么区别
Hive和Hbase有什么区别

•Hive是通过构建元数据,映射HDFS文件构建成表,本质还是HDFS,实现离线大数据仓库
•Hbase是通过构建上层分布式内存,底层HDFS,实现大数据实时存储的NoSQL数据库

Hive和Mysql有什么区别
(内心os:啊这,为啥老问我这么多区别,现在仔细想想我应该回答的更完整才符合面试官的需求。)

如何处理Hive的数据倾斜
如何解决数据倾斜一类的问题,可参见这篇:
Hive千亿级数据倾斜解决方案
描述一下Hive的MapReduce过程

mapreduce的三大阶段:

map阶段:并行处理的阶段 shuffle阶段:从离开Mapper开启到进入Reduce之前的阶段 reduce阶段:汇总整理的阶段

mapreduce的八大步骤

设置MapReduce的输入InputFormat类型,默认为TextInputFormat
自定义map函数,得到TextInputFormat的k1,v1;经过处理后传出k2,v2
分区–默认根据k2决定map中的数据该发送到哪个reduce中 排序–默认根据k2进行字典排序
规约–默认没有此阶段,是优化手段,可以提前合并 分组–相同k2的value会放到同一个集合中
自定义reduce函数,讲分组得到的k2,v2转成k3,v3输出
设置输出的OutputFormat,默认采用TextOutputFormat,将结果输出到一个纯文本文件中

Hbase的设计原则
(没答完整,刚刚自己才写的面试题,小丑竟是我自己~)

业务原则:贴合业务,保证前缀是最常用的查询字段
唯一原则:每条rowkey唯一表示一条数据
组合原则:常用的查询条件组合作为Rowkey
散列原则:rowkey构建不能连续
长度原则:满足业务需求越短越好

最后一问:项目的数据流转

4.Java方面
java的基本数据类型有哪些???

java基本数据类型有boolean、byte、short、int、long、char、float、double等

说一下Java的多态和继承

继承 子类可以直接实现父类中的方法,有选择的扩展
多态 调用同一个方法展示出来不同的方式。

String、StringBuilder、StringBuffer的区别?

String:String类被final修饰不能被继承,String内部char[]被final修饰,字符串内容无法被修改
StringBuffer:可变字符串、效率低、线程安全;
StringBuilder:可变字符序列、效率高、线程不安全;

5.Mysql的 一些问题
union和union all的区别
左连接和右连接 内连接和外连接
什么是最左前缀原则?什么是最左匹配原则

顾名思义,就是最左优先,在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。
最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1
and b = 2 and c > 3 and d = 4
如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

innoDB啥。。。
没有复习过全军覆没。。。

结尾

我的想法是约到面试,才能从实战中提升自己,
这次约上字节的面试是我没想到的,
时间有些仓促,很多东西没准备好,估计一面就得挂了

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值