既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
第二个方法允许用户指定初始大小。所有位初始化为0。
BitSet(int size)
BitSet中实现了Cloneable接口中定义的方法如下表所列:
向量(Vector)
向量(Vector)类和传统数组非常相似,但是Vector的大小能根据需要动态的变化。
和数组一样,Vector对象的元素也能通过索引访问。
使用Vector类最主要的好处就是在创建对象的时候不必给对象指定大小,它的大小会根据需要动态的变化。
Vector 类实现了一个动态数组。和 ArrayList 很相似,但是两者是不同的:
- Vector 是同步访问的。
- Vector 包含了许多传统的方法,这些方法不属于集合框架。
Vector 主要用在事先不知道数组的大小,或者只是需要一个可以改变大小的数组的情况。
Vector 类支持 4 种构造方法。
第一种构造方法创建一个默认的向量,默认大小为 10:
Vector()
第二种构造方法创建指定大小的向量。
Vector(int size)
第三种构造方法创建指定大小的向量,并且增量用 incr 指定。增量表示向量每次增加的元素数目。
Vector(int size,int incr)
第四种构造方法创建一个包含集合 c 元素的向量:
Vector(Collection c)
除了从父类继承的方法外 Vector 还定义了以下方法:
栈(Stack)
栈(Stack)实现了一个后进先出(LIFO)的数据结构。
你可以把栈理解为对象的垂直分布的栈,当你添加一个新元素时,就将新元素放在其他元素的顶部。
当你从栈中取元素的时候,就从栈顶取一个元素。换句话说,最后进栈的元素最先被取出。
栈(Stack)是Vector的一个子类,它栈实现了一个标准的后进先出的栈。
除了由向量定义的所有方法,也定义了自己的一些方法。
堆()
除了由向量定义的所有方法外,自己还定义了一些方法:
字典(Dictionary)
字典(Dictionary) 类是一个抽象类,它定义了键映射到值的数据结构。
当你想要通过特定的键而不是整数索引来访问数据的时候,这时候应该使用Dictionary。
由于Dictionary类是抽象类,所以它只提供了键映射到值的数据结构,而没有提供特定的实现。
Dictionary 类是一个抽象类,用来存储键/值对,作用和Map类相似。
给出键和值,你就可以将值存储在Dictionary对象中。一旦该值被存储,就可以通过它的键来获取它。所以和Map一样, Dictionary 也可以作为一个键/值对列表。
Dictionary定义的抽象方法如下表所示:
哈希表(Hashtable)
Hashtable类提供了一种在用户定义键结构的基础上来组织数据的手段。
例如,在地址列表的哈希表中,你可以根据邮政编码作为键来存储和排序数据,而不是通过人名。
哈希表键的具体含义完全取决于哈希表的使用情景和它包含的数据。
Hashtable是原始的java.util的一部分, 是一个Dictionary具体的实现 。
然而,Java 2 重构的Hashtable实现了Map接口,因此,Hashtable现在集成到了集合框架中。它和HashMap类很相似,但是它支持同步。
像HashMap一样,Hashtable在哈希表中存储键/值对。当使用一个哈希表,要指定用作键的对象,以及要链接到该键的值。
然后,该键经过哈希处理,所得到的散列码被用作存储在该表中值的索引。
Hashtable定义了四个构造方法。第一个是默认构造方法:
Hashtable()
第二个构造函数创建指定大小的哈希表:
Hashtable(int size)
第三个构造方法创建了一个指定大小的哈希表,并且通过fillRatio指定填充比例。
填充比例必须介于0.0和1.0之间,它决定了哈希表在重新调整大小之前的充满程度:
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
mg-yzpR84Pi-1715649576077)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!