网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
![在这里插入图片描述](https://img-blog.csdnimg.cn/4a177f87504e4a19bac7c3dd9713cbb5.png)
>
> 在上面的示例中,我们分别将列表和元组转换为数组。
>
>
>
## 3、使用zeros和ones函数创建数组
**zeros函数和ones函数可以用来创建指定大小和数据类型的数组,其中zeros函数创建的数组中所有元素都为0,ones函数创建的数组中所有元素都为1。**
import numpy as np
创建一个3行4列的二维数组,其中所有元素都为0
a = np.zeros((3, 4))
print(a)
创建一个2行3列的二维数组,其中所有元素都为1
b = np.ones((2, 3))
print(b)
![在这里插入图片描述](https://img-blog.csdnimg.cn/01e1216353ec4ace9ed318713caeb469.png)
>
> 在上面的示例中,我们分别使用zeros和ones函数创建了二维数组,并指定了数组的大小。
>
>
>
## 4、使用arange函数创建数组
**arange函数可以用来创建一维数组,类似于Python内置的range函数。**
**arange函数的语法为:**
numpy.arange([start, ]stop, [step, ]dtype=None)
>
> 其中,start表示起始值,默认为0;stop表示终止值(不包含),必须指定;step表示步长,默认为1;dtype表示数据类型,默认为None
>
>
>
import numpy as np
创建一个从0到9的一维数组
a = np.arange(10)
print(a)
创建一个从2到8,步长为2的一维数组
b = np.arange(2, 9, 2)
print(b)
![在这里插入图片描述](https://img-blog.csdnimg.cn/e2deef7f9d3c4d7b9238a7127bb005a0.png)
>
> 在上面的示例中,我们分别使用arange函数创建了一维数组,并指定了数组的起始值、终止值和步长。
>
>
>
## 5、使用linspace和logspace函数创建数组
**linspace函数和logspace函数可以用来创建一维数组,其中linspace函数创建的数组中元素是等间隔的,logspace函数创建的数组中元素是对数间隔的。**
import numpy as np
创建一个从0到1,有11个元素的一维数组
a = np.linspace(0, 1, 11)
print(a)
创建一个从10的0次方到10的2次方,有5个元素的一维数组
b = np.logspace(0, 2, 5)
print(b)
![在这里插入图片描述](https://img-blog.csdnimg.cn/368db56f361f460bb6ebac5f8a6002d7.png)
>
> 在上面的示例中,我们分别使用linspace和logspace函数创建了一维数组,并指定了数组的起始值、终止值和元素个数。
> 注意,logspace函数的第三个参数
>
>
>
## 6、使用random函数创建数组
**NumPy中的random模块提供了一些函数用于生成随机数和随机数组。使用这些函数可以创建指定大小和数据类型的随机数组。**
import numpy as np
创建一个2行3列的二维数组,其中元素的值为[0, 1)之间的随机数
a = np.random.random((2, 3))
print(a)
创建一个3行3列的二维数组,其中元素的值为标准正态分布的随机数
b = np.random.randn(3, 3)
print(b)
![在这里插入图片描述](https://img-blog.csdnimg.cn/d1ffab954fd949fd89524e8cc8e9215a.png)
>
> 在上面的示例中,我们分别使用random函数创建了二维数组,并指定了数组的大小。
>
>
>
## 7、使用fromfile函数和frombuffer函数创建数组
**fromfile函数和frombuffer函数可以从文件或缓冲区中读取数据并创建数组。**
import numpy as np
从文件中读取数据并创建一维数组
a = np.fromfile(‘data.txt’, dtype=np.float32)
print(a)
从缓冲区中读取数据并创建二维数组
buf = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
b = np.frombuffer(buf, dtype=np.int32).reshape(3, 3)
print(b)
![在这里插入图片描述](https://img-blog.csdnimg.cn/2d241ee71f1f47389e0c498b1c488cca.png)
![img](https://img-blog.csdnimg.cn/img_convert/3975bd4b6e42713866791aa06ddf8617.png)
![img](https://img-blog.csdnimg.cn/img_convert/640ceb81dd854d94aeb5668f899a5b32.png)
![img](https://img-blog.csdnimg.cn/img_convert/69c694366860539ec05969b5661835c3.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**