既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
4.存储引擎:Kudu
5.分布式数据库:HBase
6.实时框架:Flink
三、其他
大数据入门系列文章
1.大数据入门-大数据是什么
大数据入门系列文章
=========
你知道什么是大数据吗,请走传送门。
1.大数据入门-大数据是什么
一、概念
====
大数据技术是指在构架大数据平台的时候需要的技术。包含存储系统,数据库,数据仓库,资源调度,查询引擎,实时框架等。下面以我目前所了解到的一些技术做简要介绍。目前之介绍简单概念。
二、技术详解
======
1.基础架构:Hadoop
1.架构
2.简介
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
2.分布式文件系统:HDFS
1.HDFS架构
2.简介
指被设计成适合运行在通用硬件上的分布式文件系统。
3.特点
HDFS有着高容错性的特点,并且设计用来部署在低廉的硬件上。而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。
3.数据仓库:Hive
1.架构
2.简介
Hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。
3.特点
执行过程走MapReduce比较慢,处理规模大,可扩展性高,加载模式为读时模式。后面就MapReduce会做专门的解释。
4.存储引擎:Kudu
1.架构
2.简介
Apache Kudu是由Cloudera开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Kudu支持水平扩展,使用Raft协议进行一致性保证,并且与Cloudera Impala和Apache Spark等当前流行的大数据查询和分析工具结合紧密。
3.特点
支持随机读写,支持OLAP 分析,太多列查询时性能下降,跟关系型数据有点类似。其存储文件不在HDFS上面,有自己的存储文件系统。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新