摘要
本文旨在研究基于深度强化学习的有源配电网过流保护方法。传统配电网在实际运行中存在负荷数据损坏、缺失和误差等问题,可能导致过流保护失效。本文通过引入深度强化学习算法,提出一种智能化、动态化的过流保护策略,以应对有源配电网中的复杂过流问题。利用pandapower库创建仿真模型,通过Gymnasium库构建强化学习环境,使用PPO算法进行训练。实验结果表明,PPO算法在优化有源配电网过流保护策略方面表现优于粒子群算法(PSO)。
理论
1. 有源配电网及过流保护问题:
有源配电网通过引入智能化设备和先进的控制策略,实现了电力生产和负荷管理的高度自动化与优化。研究基于高效算法的过流保护策略具有重要意义。
2. 粒子群算法(PSO):
PSO通过模拟鸟群觅食过程来寻找问题的最优解。其基本公式为:
其中,为粒子的速度,为惯性权重系数,为单个粒子寻优的最优值,和为随机数。
3. 深度强化学习算法:
采用Gymnasium库构建强化学习环境,PPO算法在处理大规模连续状态和动作空间时表现出色。具体设置如下:
运行结果
通过仿真实验,本文选择了深度强化学习中的PPO算法进行训练,并与粒子群算法(PSO)进行了对比。实验结果如下: