2024年大数据最新机器学习算法(7)—— 朴素贝叶斯算法,2024大数据开发开发面试解答

本文详细介绍了朴素贝叶斯算法在文章分类中的运用,特别是如何处理特征频率为0的问题,以及与拉普拉斯平滑系数的结合。文章还讨论了朴素贝叶斯的优点、缺点和与逻辑回归的区别,提供了一套适合不同学习阶段的大数据教育资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

所以,思考题如果按照朴素贝叶斯的思路来解决,就可以是

P(产品, 超重) = P(产品) \* P(超重) = 2/7 \* 3/7 = 6/49
p(产品, 超重|喜欢) = P(产品|喜欢) \* P(超重|喜欢) = 1/2 \* 1/4 = 1/8
P(喜欢|产品, 超重) = P(产品, 超重|喜欢)P(喜欢)/P(产品, 超重) = 1/8 \* 4/7 / 6/49 = 7/12

3 拉普拉斯平滑系数

贝叶斯公式如果应用在文章分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值