1. 算法原理
K-means是一种广泛使用的聚类算法,其目标是将数据点划分为K个簇,使得簇内的点尽可能地接近簇中心(质心),而簇间的点则尽可能地远离。算法的核心思想是最小化簇内的平方误差。
过程:
- 初始化:随机选择K个点作为初始质心。
- 分配:将每个数据点分配到距离其最近的质心所在的簇。
- 更新:重新计算每个簇的质心,即簇内所有点的均值。
- 重复:重复步骤2和步骤3,直到质心不再变化或达到最大迭代次数。
2. 应用场景
- 市场细分:根据消费者行为将市场划分为不同的群体,进行有针对性的营销。
- 图像压缩:在图像处理中,将像素值量化为K个颜色,从而减少图像的存储空间。
- 客户分类:根据客户的购买历史或特征对客户进行分类,以便进行个性化服务。
- 异常检测:识别与大多数数据点明显不同的异常点。
3. 实现步骤
- 选择K值:选择聚类数K&#x