K-means算法原理及应用场景

1. 算法原理

K-means是一种广泛使用的聚类算法,其目标是将数据点划分为K个簇,使得簇内的点尽可能地接近簇中心(质心),而簇间的点则尽可能地远离。算法的核心思想是最小化簇内的平方误差。

过程

  1. 初始化:随机选择K个点作为初始质心。
  2. 分配:将每个数据点分配到距离其最近的质心所在的簇。
  3. 更新:重新计算每个簇的质心,即簇内所有点的均值。
  4. 重复:重复步骤2和步骤3,直到质心不再变化或达到最大迭代次数。

2. 应用场景

  • 市场细分:根据消费者行为将市场划分为不同的群体,进行有针对性的营销。
  • 图像压缩:在图像处理中,将像素值量化为K个颜色,从而减少图像的存储空间。
  • 客户分类:根据客户的购买历史或特征对客户进行分类,以便进行个性化服务。
  • 异常检测:识别与大多数数据点明显不同的异常点。

3. 实现步骤

  1. 选择K值:选择聚类数K&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值