人工智能算法研究院
专注人工智能领域,擅长计算机视觉方向,私信可承接项目和答疑。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv12/11/10算法改进【NO.163】引入高效视觉曼巴模型(EfficientViM)
引入高效视觉曼巴模型(EfficientViM)原创 2025-05-30 13:21:26 · 120 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.159】卷积加性自注意力视觉 Transformer,以在移动应用中实现效率和性能之间的平衡。
卷积加性自注意力视觉 Transformer,以在移动应用中实现效率和性能之间的平衡。引入了卷积加性自注意力(CAS)块混合架构,并在每个块中使用 CATM。原创 2024-12-19 21:31:18 · 122 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.158】使用一种名为 PRepBN 的新方法,在训练过程中逐步用重新参数化的 BatchNorm 替代 LayerNorm
一种名为 PRepBN 的新方法,在训练过程中逐步用重新参数化的 BatchNorm 替代 LayerNorm。原创 2024-12-18 22:24:13 · 334 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.157】引入MetaFormer
ConvFormer 优于 ConvNeXt。将常见的深度可分离卷积作为令牌混合器,名为 ConvFormer 的模型(可视为纯 CNN)优于强大的 CNN 模型 ConvNeXt。原创 2024-12-17 21:54:01 · 215 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.156】使用基于廉价卷积算子的新型图像恢复网络
CNN 在图像恢复方面的潜力,并表明所提出的简单卷积网络架构(称为 ConvIR)的性能可以与 Transformer 同类架构相当或更好。通过重新审视高级图像恢复算法的特点,我们发现了导致恢复模型性能改进的几个关键因素。这促使我们开发一种基于廉价卷积算子的新型图像恢复网络。这促使我们开发一种基于廉价卷积算子的新型图像恢复网络。原创 2024-12-15 22:28:47 · 83 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.154】引入内容自适应域转移模块
引入内容自适应域转移模块原创 2024-12-04 22:14:26 · 140 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.153】引入用于图像超分辨率的高效长距离注意力网络
引入用于图像超分辨率的高效长距离注意力网络原创 2024-12-03 18:13:26 · 649 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.152】引入用于与 Transformer 进行多尺度通道交叉融合和一个子模块,用于引导融合的多尺度通道信息有效
一种CTrans 模块是 U-Net 跳跃连接的替代方案,它由一个子模块组成,用于与 Transformer 进行多尺度通道交叉融合(名为 CCT)和一个子模块 Channel-wise Cross-Attention(名为 CCA),用于引导融合的多尺度通道信息有效。原创 2024-10-27 20:30:21 · 266 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.148】引入用于遥感图像语义分割的CNN 和多尺度 Transformer 融合网络
提出了一种新的编码器-解码器结构化语义分割网络,命名为 CNN 和多尺度变压器融合网络 (CMTFNet),用于提取和融合高分辨率遥感图像的局部信息和多尺度全局上下文信息。原创 2024-10-27 12:11:45 · 345 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.147】引入卷积加法自注意力视觉变压器实现高效的移动应用程序——一种新的加法模拟larity 函数
一种新的加法模拟larity 函数遵循此范式并呈现名为 Convolutional Additive Token 的 cient 实现混频器 (CATM)。这种简化导致了显著的计算开销中的归纳。原创 2024-10-27 12:07:43 · 374 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.144】引入线性可变形卷积,它为卷积内核提供了任意数量的参数和任意采样的形状,为网络开销和性能之间的权衡提供了更丰富的选择
尽管可变形卷积 (Deformable Conv) 解决了标准卷积的固定采样问题,但参数的数量也趋于平方增长。针对上述问题,本文探讨了线性可变形卷积 (LDConv),它为卷积内核提供了任意数量的参数和任意采样的形状,为网络开销和性能之间的权衡提供了更丰富的选择。原创 2024-10-27 10:05:25 · 131 阅读 · 0 评论 -
YOLOv11/10/8算法改进【NO.143】引入根据热传导构建视觉模型——受热传导物理原理的启发,其基本思想是将图像块概念化为热源,并将其相关性的计算建模为热能的扩散
一种新颖的视觉骨干模型,可同时实现高计算效率和全局感受野原创 2024-10-27 09:42:13 · 225 阅读 · 0 评论 -
YOLOv8算法改进【NO.142】引入子波池化方法改进上下采样
引入子波池化方法改进上下采样原创 2024-10-19 17:48:18 · 245 阅读 · 0 评论 -
YOLOv10算法改进【NO.141】引入多阶门控聚合网络改进
多阶门控聚合网络原创 2024-10-05 09:48:30 · 263 阅读 · 0 评论 -
YOLOv10/8算法改进【NO.140】引入Unified-IoU损失函数
引入Unified-IoU损失函数原创 2024-10-04 16:15:22 · 280 阅读 · 0 评论 -
YOLOv10/8算法改进【NO.139】借鉴RCS-YOLO算法改进
RCS和一种RCS的单点聚合(RCS- osa),将特征级联和计算效率结合起来,以提取更丰富的信息并减少时间消耗。原创 2024-10-04 15:44:58 · 869 阅读 · 0 评论 -
YOLOv8算法改进【NO.138】基于细节增强卷积改进YOLO算法
基于细节增强卷积改进YOLO算法:一种由细节增强卷积(DEConv)和内容引导注意力(CGA)组成的细节增强注意力块(DEAB),以增强特征学习,提高去雾性能原创 2024-10-04 12:40:44 · 465 阅读 · 0 评论 -
YOLOv10算法改进【NO.137】使用卷积神经网络的小波池化改进YOLOv10n的上采样和下采样
使用卷积神经网络的小波池化改进YOLOv10n的上采样和下采样原创 2024-10-03 19:59:09 · 611 阅读 · 0 评论 -
YOLOv10算法改进【NO.136】使用retentive Networks Meet Vision Transformers改进主干网络
使用retentive Networks Meet Vision Transformers改进主干网络原创 2024-10-03 12:00:16 · 294 阅读 · 0 评论 -
目标检测应用场景—数据集【NO.35】学生课堂姿势数据集
学生课堂姿势数据集原创 2024-05-17 07:12:17 · 685 阅读 · 1 评论 -
RT-DETR算法改进【NO.2】结合最新的CVPR2023年Fasternet网络模块
DETR结合最新的CVPR2023年Fasternet网络模块原创 2024-06-02 07:25:59 · 610 阅读 · 0 评论 -
RT-DETR算法改进【NO.1】借鉴CVPR2024中的StarNet网络StarBlock改进算法
借鉴CVPR2024中的StarNet网络StarBlock改进RT-DETR算法原创 2024-05-29 07:20:16 · 1355 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.135】借鉴CVPR2024中的StarNet网络星形操作将输入映射到高维非线性特征空间的能力改进算法
借鉴CVPR2024中的StarNet网络星形操作将输入映射到高维非线性特征空间的能力改进算法原创 2024-05-26 08:08:51 · 936 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.133】2024年最新MobileNetV4轻量化算法作为YOLO算法的主干特征提取网络
2024年最新MobileNetV4轻量化算法作为YOLO算法的主干特征提取网络原创 2024-05-23 07:37:04 · 1030 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.130】采用DEA-Net网络中的内容引导注意力(CGA)改进特征融合网络Neck
采用DEA-Net网络中的内容引导注意力(CGA)改进特征融合网络Neck原创 2024-05-15 21:29:57 · 459 阅读 · 0 评论 -
YOLOv8算法改进【NO.125】鲁棒特征下采样(RFD) 改进YOLOv8
遥感检测场景领域效果较佳原创 2024-04-29 07:33:01 · 843 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.124】 自研金字塔模块EHSFPN改进YOLO算法
兼具轻量化和精度提升,自研金字塔模块。原创 2024-04-29 06:26:39 · 893 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.123】 使用Dynamic Group Convolution Shuffle Transformer改进YOLO算法
轻量化改进YOLO算法Lightweight Object Detection原创 2024-04-27 08:41:28 · 354 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.122】 借鉴使用MFDS-DETR的高水平筛选特征融合金字塔HS-FPN改进优化YOLO中的特征融合网络
高水平筛选特征融合金字塔HS-FPN改进YOLO原创 2024-04-27 07:56:29 · 598 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.121】 使用CVPR2024顶会模型多核初始网络(PKINet)中的上下文锚点注意力CAA模块改进YOLO算法
可尝试遥感图像的检测场景。使用CVPR2024 PKINet中的CAA模块来对HSFPN模块进行改进。上下文锚点注意力 (CAA) 模块与捕获远程上下文信息。原创 2024-04-27 07:19:27 · 1154 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.118】 使用Context and Spatial Feature Calibration模块改进yolov8(CSFCN模块)
使用Context and Spatial Feature Calibration模块改进yolov8(CSFCN模块)原创 2024-04-23 06:39:18 · 915 阅读 · 0 评论 -
YOLOv8算法改进【NO.113】利用DWRSeg网络中的Dilation-wise Residual(DWR)模块,加强从网络高层的可扩展感受野中提取特征
该创新点可以加强从网络高层的可扩展感受野中提取特征原创 2024-04-01 07:21:14 · 596 阅读 · 0 评论 -
YOLOv8算法改进【NO.112】使用YOLO-Face V2中的遮挡感知注意力改进Head,有效应对遮挡场景的错漏检问题
该创新点有效适用于有遮挡场景,解决遮挡造成的错漏检问题。原创 2024-04-01 07:13:50 · 962 阅读 · 0 评论 -
YOLOv8算法改进【NO.110】利用UniRepLKNet中的DilatedReparamBlock对YOLOv9中的RepNCSPELAN进行二次创新
算法二次创新。利用UniRepLKNet中的DilatedReparamBlock对YOLOv9中的RepNCSPELAN进行二次创新原创 2024-03-30 22:50:10 · 411 阅读 · 0 评论 -
YOLOv8算法改进【NO.109】采用YOLOv9下采样改进YOLOv8算法
采用YOLOv9下采样改进YOLOv8算法原创 2024-03-28 07:44:51 · 368 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.108】RepViTBlock和EMA注意力机制融合新模块改进YOLO算法
RepViTBlock和EMA注意力机制融合新模块改进YOLO算法原创 2024-03-26 22:34:37 · 874 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.107】利用Group Convolution、ShuffleNetV2和Vision Transformer等先进技术的协同作用改进YOLO算法
CVPR2024年最新论文改进模块!有效地最小化了模型的参数计数和内存使用,简化了网络架构,并增强了对资源受限设备的实时对象检测能力。原创 2024-03-25 21:59:41 · 725 阅读 · 0 评论 -
YOLOv8/YOLOv5算法改进【NO.104】引入YOLOv9提出模块PGI模块
借鉴YOLOv9核心思想引入到YOLOv8等算法中进行改进创新原创 2024-03-11 12:37:14 · 744 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.103】引入YOLOv9提出模块RepNCSPELAN模块,亲测有效
引入YOLOv9提出模块RepNCSPELAN模块,亲测有效原创 2024-03-10 09:31:24 · 1285 阅读 · 0 评论 -
YOLOv9/YOLOv8算法改进【NO.102】涨点+轻量化,亲测有效。引入二次创新模块Faster-EMA,将EMA注意力机制与FasterNet中的核心模块结合构成新模块,
YOLOv8算法二次创新,亲测涨点且轻量化原创 2024-03-09 23:05:02 · 5864 阅读 · 7 评论