最后
按照上面的过程,4个月的时间刚刚好。当然Java的体系是很庞大的,还有很多更高级的技能需要掌握,但不要着急,这些完全可以放到以后工作中边用别学。
学习编程就是一个由混沌到有序的过程,所以你在学习过程中,如果一时碰到理解不了的知识点,大可不必沮丧,更不要气馁,这都是正常的不能再正常的事情了,不过是“人同此心,心同此理”的暂时而已。
“道路是曲折的,前途是光明的!”
- preIndexNo:当前slot下当前index索引单元的前一个index索引单元的indexNo
2、indexFile的创建
indexFile的文件名为当前文件被创建时的时间戳
。这个时间戳有什么用处呢?
根据业务key进行查询时,查询条件除了key之外,还需要指定一个要查询的时间戳,表示要查询不大于该时间戳的最新的消息,即查询指定时间戳之前存储的最新消息
。这个时间戳文件名可以简化查询,提高查询效率
。具体后面会详细讲解。
indexFile文件是何时创建的?其创建的条件(时机)
有两个:
-
当第一条带key的消息发送来后,系统发现没有indexFile,此时会创建第一个indexFile文件
-
当一个indexFile中挂载的index索引单元数量超出2000w个时,会创建新的indexFile。当带key的消息发送到来后,系统会找到最新的indexFile,并从其indexHeader的最后4字节中读取到indexCount。若indexCount >= 2000w时,会创建新的indexFile。
由于可以推算出,
一个indexFile的最大大小是:(40 + 500w * 4 + 2000w * 20)字节
3、查询流程
当消费者通过业务key来查询相应的消息时,其需要经过一个相对较复杂的查询流程。不过,在分析查询流程之前,首先要清楚几个定位计算式子:
计算指定消息key的slot槽位序号:
slot槽位序号 = key的hash % 500w (式子1)
计算槽位序号为n的slot在indexFile中的起始位置:
slot(n)位置 = 40 + (n - 1) * 4 (式子2)
计算indexNo为m的indexs在indexFile中的位置:
index(m)位置 = 40 + 500w * 4 + (m - 1) * 20 (式子3)
40为indexFile中indexHeader的字节数
500w * 4 是所有slots所占的字节数
具体查询流程如下:
消费者从Broker中获取消息的方式有两种:pull拉取方式和push推动方式。消费者组对于消息消费的模式又分为两种:集群消费Clustering和广播消费Broadcasting。
1、获取消费类型
- 拉取式消费
Consumer主动从Broker中拉取消息,主动权由Consumer控制。一旦获取了批量消息,就会启动消费过程。不过,该方式的实时性较弱
,即Broker中有了新的消息时消费者并不能及时发现并消费。
由于拉取时间间隔是由用户指定的,所以在设置该间隔时需要注意平稳:
间隔太短,空请求比例会增加(无用功);间隔太长,消息的实时性太差
- 推送式消费
该模式下Broker收到数据后会主动推送给Consumer。该获取方式一般实时性较高
。
该获取方式是典型的发布-订阅模式,即Consumer向其关联的Queue注册了监听器,一旦发现有新的消息到来就会触发回调的执行,回调方法是Consumer去Queue中拉取消息。而这些都是基于Consumer与Broker间的长连接的
。长连接的维护是需要消耗系统资源的
。
-
对比
-
pull:需要应用去实现对关联Queue的遍历,
实时性差
;但便于应用控制消息的拉取
-
push:封装了对关联Queue的遍历,
实时性强
,但会占用较多的系统资源
2、消费模式
- 广播消费
广播消费模式下,相同Consumer Group的每个Consumer实例都接收同一个Topic的全量消息
。即每条消息都会被发送到Consumer Group中的每个Consumer。
- 集群消费
集群消费模式下,相同Consumer Group的每个Consumer实例平均分摊
同一个Topic的消息。即每条消息只会被发送到Consumer Group中的某个Consumer。
-
消息进度保存
-
广播模式:
消费进度保存在consumer端
。因为广播模式下consumer group中每个consumer都会消费所有消息,但它们的消费进度是不同。所以consumer各自保存各自的消费进度。 -
集群模式:
消费进度保存在broker中
。consumer group中的所有consumer共同消费同一个Topic中的消息,同一条消息只会被消费一次。消费进度会参与到了消费的负载均衡中,故消费进度是需要共享的。
下图是broker中存放的各个Topic的各个Queue的消费进度。
3、Rebalance机制(再均衡)
Rebalance机制
讨论的前提是:集群消费
。
- 什么是Rebalance
Rebalance即再均衡,指的是,将⼀个Topic下的多个Queue在同⼀个Consumer Group中的多个Consumer间进行重新分配的过程
。
Rebalance机制的本意是为了提升消息的并行消费能力
。例如,⼀个Topic下5个队列,在只有1个消费者的情况下,这个消费者将负责消费这5个队列的消息。如果此时我们增加⼀个消费者,那么就可以给其中⼀个消费者分配2个队列,给另⼀个分配3个队列,从而提升消息的并行消费能力。
- Rebalance限制
由于⼀个队列最多分配给⼀个消费者,因此当某个消费者组下的消费者实例数量大于队列的数量时,多余的消费者实例将分配不到任何队列。
- Rebalance危害
Rebalance的在提升消费能力的同时,也带来一些问题:
-
消费暂停:在只有一个Consumer时,其负责消费所有队列;在新增了一个Consumer后会触发Rebalance的发生。此时原Consumer就需要暂停部分队列的消费,等到这些队列分配给新的Consumer后,这些暂停消费的队列才能继续被消费。
-
消费重复:Consumer 在消费新分配给自己的队列时,必须接着之前Consumer 提交的消费进度的offset继续消费。然而默认情况下,offset是异步提交的,这个异步性导致提交到Broker的offset与Consumer实际消费的消息并不一致。这个不一致的差值就是可能会重复消费的消息。
同步提交:
consumer提交了其消费完毕的一批消息的offset给broker后,
需要等待broker的成功ACK
。当收到ACK后,consumer才会继续获取并消费下一批消息。在等待ACK期间,consumer是阻塞的。
异步提交:
consumer提交了其消费完毕的一批消息的offset给broker后,
不需要等待broker的成功ACK
。consumer可以直接获取并消费下一批消息。
对于一次性读取消息的数量,需要根据具体业务场景选择一个相对均衡的是很有必要的。
数量过大,系统性能提升了,但产生重复消费的消息数量可能会增加;
数量过小,系统性能会下降,但被重复消费的消息数量可能会减少。
-
消费突刺:由于Rebalance可能导致重复消费,如果需要重复消费的消息过多,或者因为Rebalance暂停时间过长从而导致积压了部分消息。
消息积压
,那么有可能会导致在Rebalance结束之后瞬间需要消费很多消息
。 -
Rebalance产生的原因
导致Rebalance产生的原因,无非就两个:消费者所订阅Topic的Queue数量发生变化
,或消费者组中消费者的数量发生变化
。
1)Queue数量发生变化的场景:
Broker扩容或缩容
Broker升级运维
Broker与NameServer间的网络异常
Queue扩容或缩容
2)消费者数量发生变化的场景:
Consumer Group扩容或缩容
Consumer升级运维
Consumer与NameServer间网络异常
- Rebalance过程
在Broker中维护着多个Map集合,这些集合中动态存放着当前Topic中Queue的信息、Consumer Group中Consumer实例的信息。一旦发现消费者所订阅的Queue数量发生变化,或消费者组中消费者的数量发生变化,立即向Consumer Group中的每个实例发出Rebalance通知。
TopicConfigManager:key是topic名称,value是TopicConfig。TopicConfig中维护着该Topic中所有Queue的数据。
ConsumerManager:key是Consumser Group Id,value是ConsumerGroupInfo。ConsumerGroupInfo中维护着该Group中所有Consumer实例数据。
ConsumerOffsetManager:key为Topic与订阅该Topic的Group的组合,即topic@group,value是一个内层Map。内层Map的key为QueueId,内层Map的value为该Queue的消费进度offset。
Consumer实例在接收到通知后会采用·Queue分配算法
自己获取到相应的Queue,即由Consumer实例自主进行Rebalance
。
- 与Kafka对比
在Kafka中,一旦发现出现了Rebalance条件,Broker会调用Group Coordinator来完成Rebalance
。
Coordinator是Broker中的一个进程。Coordinator会在Consumer Group中选出一个Group Leader。由这个Leader根据自己本身组情况完成Partition分区的再分配。这个再分配结果会上报给Coordinator,并由Coordinator同步给Group中的所有Consumer实例。
Kafka中的Rebalance是由Consumer Leader完成的。
RocketMQ中的Rebalance是由每个Consumer自身完成的,Group中不存在Leader。
4、Queue分配算法
一个Topic中的Queue只能由Consumer Group中的一个Consumer进行消费,而一个Consumer可以同时消费多个Queue中的消息。那么Queue与Consumer间的配对关系是如何确定的,即Queue要分配给哪个Consumer进行消费,也是有算法策略的。常见的有四种策略。这些策略是通过在创建Consumer时的构造器传进去的。
- 平均分配策略
该算法是要根据avg = QueueCount / ConsumerCount
的计算结果进行分配的。如果能够整除,则按顺序将avg个Queue逐个分配Consumer;如果不能整除,则将多余出的Queue按照Consumer顺序逐个分配。
该算法即,先计算好每个Consumer应该分得几个Queue,然后再依次将这些数量的Queue逐个分配个Consumer。
- 环形平均策略
环形平均算法是指,根据消费者的顺序,依次在由queue队列组成的环形图中逐个分配
。
该算法
不用事先计算
,每个Consumer需要分配几个Queue,直接一个一个分即可。
- 一致性hash策略
该算法会将consumer的hash值作为Node节点存放到hash环上,然后将queue的hash值也放到hash环上,通过顺时针方向
,距离queue最近的那个consumer就是该queue要分配的consumer。
该算法存在的问题:
分配不均
。
- 同机房策略
该算法会根据queue的部署机房位置和consumer的位置
,过滤出当前consumer相同机房的queue。然后按照平均分配策略或环形平均策略对同机房queue进行分配
。如果没有同机房queue,则按照平均分配策略或环形平均策略对所有queue进行分配。
- 对比
一致性hash算法存在的问题:
两种平均分配策略的分配效率较高,一致性hash策略的较低。因为一致性hash算法较复杂。
另外,一致性hash策略分配的结果也很大可能上存在不平均的情况。
一致性hash算法存在的意义:
其可以有效减少由于消费者组扩容或缩容所带来的大量的Rebalance
。避免减少Rebalance
一致性hash算法的应用场景:
Consumer数量变化较频繁的场景。
5、至少一次原则
RocketMQ有一个原则:每条消息必须要被成功消费
一次。
那么什么是成功消费呢?Consumer在消费完消息后会向其消费进度记录器提交其消费消息的offset,offset被成功记录到记录器中,那么这条消费就被成功消费了。
什么是消费进度记录器?
对于
广播消费模式
来说,Consumer
本身就是消费进度记录器
。
对于
集群消费模式来
说,Broker
是消费进度记录器
。
订阅关系的一致性指的是,同一个消费者组(Group ID相同)下所有Consumer实例所订阅的Topic与Tag及对消息的处理逻辑必须完全一致。否则,消息消费的逻辑就会混乱,甚至导致消息丢失。
1、正确订阅关系
多个消费者组订阅了多个Topic,并且每个消费者组里的多个消费者实例的订阅关系保持了一致。
2、错误订阅关系
一个消费者组订阅了多个Topic,但是该消费者组里的多个Consumer实例的订阅关系并没有保持一致。
- 订阅了不同Topic
该例中的错误在于,同一个消费者组中的两个Consumer实例订阅了不同的Topic。
Consumer实例1-1:(订阅了topic为jodie_test_A,tag为所有的消息)
Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_1”);
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe(“jodie_test_A”, “*”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
Consumer实例1-2:(订阅了topic为jodie_test_B,tag为所有的消息)
Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_1”);
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe(“jodie_test_B”, “*”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
- 订阅了不同Tag
该例中的错误在于,同一个消费者组中的两个Consumer订阅了相同Topic的不同Tag。
Consumer实例2-1:(订阅了topic为jodie_test_A,tag为TagA的消息)
Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_2”);
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe(“jodie_test_A”, “TagA”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
Consumer实例2-2:(订阅了topic为jodie_test_A,tag为所有的消息)
Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_2”);
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe(“jodie_test_A”, “*”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
- 订阅了不同数量的Topic
该例中的错误在于,同一个消费者组中的两个Consumer订阅了不同数量的Topic。
Consumer实例3-1:(该Consumer订阅了两个Topic)
Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_3”);
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe(“jodie_test_A”, “TagA”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
consumer.subscribe(“jodie_test_B”, “TagB”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
Consumer实例3-2:(该Consumer订阅了一个Topic)
Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_3”);
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe(“jodie_test_A”, “TagB”, new MessageListener() {
public Action consume(Message message, ConsumeContext context) {
System.out.println(message.getMsgID());
return Action.CommitMessage;
}
});
这里的offset指的是
Consumer的消费进度offset
。
消费进度offset是用来记录每个Queue的不同消费组的消费进度的。根据消费进度记录器的不同,可以分为两种模式:本地模式
和远程模式
。
1、offset本地管理模式
当消费模式为广播消费
时,offset使用本地模式存储
。因为每条消息会被所有的消费者消费,每个消费者管理自己的消费进度,各个消费者之间不存在消费进度的交集。所以每个消费者都将消费进度记录在自己本地
Consumer在广播消费模式下offset相关数据以json的形式持久化到Consumer本地磁盘文件
中,默认文件路径为当前
用户主目录下的.rocketmq_offsets/${clientId}/${group}/Offsets.json
。其中 c l i e n t I d 为 当 前 消 费 者 i d , 默 认 为 i p @ D E F A U L T ; {clientId}为当前消费者id,默认为ip@DEFAULT; clientId为当前消费者id,默认为ip@DEFAULT;{group}为消费者组名称。
2、offset远程管理模式
当消费模式为集群消费
时,offset使用远程模式管理
。因为所有Cosnumer实例对消息采用的是均衡消费
,所有Consumer共享Queue的消费进度
。消费进度被记录在broker中
Consumer在集群消费模式下offset相关数据以json的形式持久化到Broker磁盘文件
中,文件路径为当前用户主目录下的store/config/consumerOffset.json。
Broker启动时会加载这个文件,并写入到一个双层Map(ConsumerOffsetManager)。外层map的key为topic@group,value为内层map。内层map的key为queueId,value为offset。当发生Rebalance时,新的Consumer会从该Map中获取到相应的数据来继续消费。
集群模式下offset采用远程管理模式,主要是为了保证Rebalance机制,不然新的consumer就无法获取到之前consumer的消费进度。
3、offset用途
消费者是如何从最开始持续消费消息的?消费者要消费的第一条消息的起始位置是用户自己通过consumer.setConsumeFromWhere()方法指定的。
在Consumer启动后,其要消费的第一条消息的起始位置常用的有三种,这三种位置可以通过枚举类型常量设置。这个枚举类型为ConsumeFromWhere。
CONSUME_FROM_LAST_OFFSET:从queue的当前最后一条消息开始消费
CONSUME_FROM_FIRST_OFFSET:从queue的第一条消息开始消费
CONSUME_FROM_TIMESTAMP:从指定的具体时间戳位置的消息开始消费。这个具体时间戳是通过另外一个语句指定的 。consumer.setConsumeTimestamp(“20210701080000”) yyyyMMddHHmmss
当消费完一批消息后,Consumer会提交其消费进度offset给Broker,Broker在收到消费进度后会将其更新到那个双层Map(ConsumerOffsetManager)及consumerOffset.json文件中,然后向该Consumer进行ACK,而ACK内容中包含三项数据:当前消费队列的最小offset(minOffset)、最大offset(maxOffset)、及下次消费的起始offset(nextBeginOffset)。
4、重试队列
当rocketMQ对消息的消费出现异常时,会将发生异常的消息的offset提交到Broker中的重试队列
。系统在发生消息消费异常时会为当前的topic@group创建一个重试队列,该队列以%RETRY%
开头,到达重试时间后进行消费重试。
5、offset的同步提交与异步提交
集群消费模式下,Consumer消费完消息后会向Broker提交消费进度offset,其提交方式分为两种:
- 同步提交:
消费者在消费完一批消息后会向broker提交这些消息的offset,然后等待broker的成功响应。若在等待超时之前收到了成功响应,则继续读取下一批消息进行消费(从ACK中获取nextBeginOffset
)。若没有收到响应,则会重新提交,直到获取到响应。而在这个等待过程中,消费者是阻塞的。其严重影响了消费者的吞吐量。
- 异步提交:
消费者在消费完一批消息后向broker提交offset,但无需等待Broker的成功响应,可以继续读取并消费下一批消息。这种方式增加了消费者的吞吐量。但需要注意,broker在收到提交的offset后,还是会向消费者进行响应的。可能还没有收到ACK,此时Consumer会从Broker中直接获取nextBeginOffset
。
1、什么是消费幂等
当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系统产生任何负面影响,那么这个消费过程就是消费幂等的。
幂等:
若某操作执行多次与执行一次对系统产生的影响是相同的,则称该操作是幂等的
。
在互联网应用中,尤其在网络不稳定的情况下,消息很有可能会出现重复发送或重复消费。如果重复的消息可能会影响业务处理,那么就应该对消息做幂等处理。
2、消息重复的场景分析
什么情况下可能会出现消息被重复消费呢?最常见的有以下三种情况
:
- 发送时消息重复
当一条消息已被成功发送到Broker并完成持久化,此时出现了网络闪断,从而导致Broker对Producer应答失败。 如果此时Producer意识到消息发送失败并尝试再次发送消息,此时Broker中就可能会出现两条内容相同并且Message ID也相同的消息(此时的msgId不是生存的,而是刚才没发送成功是msgId),那么后续Consumer就一定会消费两次该消息。
- 消费时消息重复
消息已投递到Consumer并完成业务处理,当Consumer给Broker反馈应答时网络闪断,Broker没有接收到消费成功响应。为了保证消息至少被消费一次的原则
,Broker将在网络恢复后再次尝试投递之前已被处理过的消息。此时消费者就会收到与之前处理过的内容相同、Message ID也相同的消息。
- Rebalance时消息重复
当Consumer Group中的Consumer数量发生变化时,或其订阅的Topic的Queue数量发生变化时,会触发Rebalance,此时Consumer可能会收到曾经被消费过的消息。
3、通用解决方案
- 两要素
幂等解决方案的设计中涉及到两项要素:幂等令牌,与 唯一性处理。只要充分利用好这两要素,就可以设计出好的幂等解决方案。
-
幂等令牌
:是生产者和消费者两者中的既定协议,通常指具备唯⼀业务标识的字符串
。例如,订单号、流水号。一般由Producer随着消息一同发送来的。 -
唯一性处理
:服务端通过采用⼀定的算法策略,保证同⼀个业务逻辑不会被重复执行成功多次。例如,对同一笔订单的多次支付操作,只会成功一次。 -
解决方案
对于常见的系统,幂等性操作的通用性解决方案是:
-
首先通过缓存去重。在缓存中如果已经存在了某幂等令牌,则说明本次操作是重复性操作;若缓存没有命中,则进入下一步。
-
在唯一性处理之前,先在数据库中查询幂等令牌作为索引的数据是否存在。若存在,则说明本次操作为重复性操作;若不存在,则进入下一步。
-
在同一事务中完成三项操作:唯一性处理后,将幂等令牌写入到缓存,并将幂等令牌作为唯一索引的数据写入到DB中。
第1步已经判断过是否是重复性操作了,为什么第2步还要再次判断?能够进入第2步,说明已经不是重复操作了,第2次判断是否重复?
当然不重复。一般
缓存中的数据是具有有效期
的。缓存中数据的有效期一旦过期,就是发生缓存穿透,使请求直接就到达了DBMS。减轻DB的压力
- 解决方案举例
以支付场景为例:
- 当支付请求到达后,首先在Redis缓存中却获取key为
支付流水号
的缓存value。
若value不空
,则说明本次支付是重复操作
,业务系统直接返回调用侧重复支付标识;
若value为空
,则进入下一步操作
- 到DBMS中根据
支付流水号
查询是否存在相应实例。
若存在
,则说明本次支付是重复操作
,业务系统直接返回调用侧重复支付标识;
若不存在
,则说明本次操作是首次操作
,进入下一步完成唯一性处理
- 在分布式事务中完成【唯一性处理】三项操作:
-
完成支付任务
-
将当前
支付流水号
作为key,任意字符串作为value,通过set(key, value, expireTime)将数据写入到Redis缓存 -
将当前
支付流水号
作为主键,与其它相关数据共同写入到DBMS
4、消费幂等的实现
消费幂等的解决方案很简单:为消息指定不会重复的唯一标识。因为Message ID有可能出现重复的情况,所以真正安全的幂等处理,不建议以Message ID作为处理依据。最好的方式是以业务唯一标识作为幂等处理的关键依据,而业务的唯一标识可以通过消息Key设置。以支付场景为例,可以将消息的Key设置为订单号,作为幂等处理的依据。具体代码示例如下:
Message message = new Message();
message.setKey(“ORDERID_100”);//唯一订单号
SendResult sendResult = producer.send(message);
消费者收到消息时可以根据消息的Key即订单号来实现消费幂等:
consumer.registerMessageListener(new MessageListenerConcurrently() {
@Override
public ConsumeConcurrentlyStatus consumeMessage(List msgs,ConsumeConcurrentlyContext context) {
for(MessageExt msg:msgs){
String key = msg.getKeys();
// 根据业务唯一标识Key做幂等处理
// ……
}
//返回处理成功响应
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
RocketMQ能够保证消息不丢失,但不能保证消息不重复。
1、概念
消息处理流程中,如果Consumer的消费速度跟不上Producer的发送速度,MQ中未处理的消息会越来越多(进的多出的少
),这部分消息就被称为堆积消息
。消息出现堆积进而会造成消息的消费延迟
。
以下场景需要重点关注消息堆积和消费延迟问题:
-
业务系统上下游能力不匹配
造成的持续堆积,且无法自行恢复。 -
业务系统对消息的
消费实时性要求较高
,即使是短暂的堆积造成的消费延迟也无法接受。
2、产生原因分析
Kafka进阶篇知识点
Kafka高级篇知识点
44个Kafka知识点(基础+进阶+高级)解析如下
由于篇幅有限,小编已将上面介绍的**《Kafka源码解析与实战》、Kafka面试专题解析、复习学习必备44个Kafka知识点(基础+进阶+高级)都整理成册,全部都是PDF文档**
msgs,ConsumeConcurrentlyContext context) {
for(MessageExt msg:msgs){
String key = msg.getKeys();
// 根据业务唯一标识Key做幂等处理
// ……
}
//返回处理成功响应
return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
}
});
RocketMQ能够保证消息不丢失,但不能保证消息不重复。
1、概念
消息处理流程中,如果Consumer的消费速度跟不上Producer的发送速度,MQ中未处理的消息会越来越多(进的多出的少
),这部分消息就被称为堆积消息
。消息出现堆积进而会造成消息的消费延迟
。
以下场景需要重点关注消息堆积和消费延迟问题:
-
业务系统上下游能力不匹配
造成的持续堆积,且无法自行恢复。 -
业务系统对消息的
消费实时性要求较高
,即使是短暂的堆积造成的消费延迟也无法接受。
2、产生原因分析
Kafka进阶篇知识点
[外链图片转存中…(img-sXzLBNn1-1715625429757)]
Kafka高级篇知识点
[外链图片转存中…(img-4xLCJpE1-1715625429757)]
44个Kafka知识点(基础+进阶+高级)解析如下
[外链图片转存中…(img-8rZBrkK5-1715625429758)]
由于篇幅有限,小编已将上面介绍的**《Kafka源码解析与实战》、Kafka面试专题解析、复习学习必备44个Kafka知识点(基础+进阶+高级)都整理成册,全部都是PDF文档**