最新Day366&367,java高级工程师面试视频

最后

按照上面的过程,4个月的时间刚刚好。当然Java的体系是很庞大的,还有很多更高级的技能需要掌握,但不要着急,这些完全可以放到以后工作中边用别学。

学习编程就是一个由混沌到有序的过程,所以你在学习过程中,如果一时碰到理解不了的知识点,大可不必沮丧,更不要气馁,这都是正常的不能再正常的事情了,不过是“人同此心,心同此理”的暂时而已。

道路是曲折的,前途是光明的!”

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

  • preIndexNo:当前slot下当前index索引单元的前一个index索引单元的indexNo

2、indexFile的创建

indexFile的文件名为当前文件被创建时的时间戳。这个时间戳有什么用处呢?

根据业务key进行查询时,查询条件除了key之外,还需要指定一个要查询的时间戳,表示要查询不大于该时间戳的最新的消息,即查询指定时间戳之前存储的最新消息。这个时间戳文件名可以简化查询,提高查询效率。具体后面会详细讲解。

indexFile文件是何时创建的?其创建的条件(时机)有两个:

  • 当第一条带key的消息发送来后,系统发现没有indexFile,此时会创建第一个indexFile文件

  • 当一个indexFile中挂载的index索引单元数量超出2000w个时,会创建新的indexFile。当带key的消息发送到来后,系统会找到最新的indexFile,并从其indexHeader的最后4字节中读取到indexCount。若indexCount >= 2000w时,会创建新的indexFile。

由于可以推算出,一个indexFile的最大大小是:(40 + 500w * 4 + 2000w * 20)字节


3、查询流程

当消费者通过业务key来查询相应的消息时,其需要经过一个相对较复杂的查询流程。不过,在分析查询流程之前,首先要清楚几个定位计算式子:

计算指定消息key的slot槽位序号:

slot槽位序号 = key的hash % 500w (式子1)

计算槽位序号为n的slot在indexFile中的起始位置:

slot(n)位置 = 40 + (n - 1) * 4 (式子2)

计算indexNo为m的indexs在indexFile中的位置:

index(m)位置 = 40 + 500w * 4 + (m - 1) * 20 (式子3)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NMGfQwPs-1629543900244)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821160856507.png)]

40为indexFile中indexHeader的字节数

500w * 4 是所有slots所占的字节数

具体查询流程如下:

在这里插入图片描述


四、消息的消费


消费者从Broker中获取消息的方式有两种:pull拉取方式和push推动方式。消费者组对于消息消费的模式又分为两种:集群消费Clustering和广播消费Broadcasting。

1、获取消费类型

  • 拉取式消费

Consumer主动从Broker中拉取消息,主动权由Consumer控制。一旦获取了批量消息,就会启动消费过程。不过,该方式的实时性较弱,即Broker中有了新的消息时消费者并不能及时发现并消费。

由于拉取时间间隔是由用户指定的,所以在设置该间隔时需要注意平稳:

间隔太短,空请求比例会增加(无用功);间隔太长,消息的实时性太差

  • 推送式消费

该模式下Broker收到数据后会主动推送给Consumer。该获取方式一般实时性较高

该获取方式是典型的发布-订阅模式,即Consumer向其关联的Queue注册了监听器,一旦发现有新的消息到来就会触发回调的执行,回调方法是Consumer去Queue中拉取消息。而这些都是基于Consumer与Broker间的长连接的长连接的维护是需要消耗系统资源的

  • 对比

  • pull:需要应用去实现对关联Queue的遍历,实时性差;但便于应用控制消息的拉取

  • push:封装了对关联Queue的遍历,实时性强,但会占用较多的系统资源


2、消费模式

  • 广播消费

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Lw4qRLCa-1629543900251)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821132526607.png)]

广播消费模式下,相同Consumer Group的每个Consumer实例都接收同一个Topic的全量消息。即每条消息都会被发送到Consumer Group中的每个Consumer。

  • 集群消费

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oZgMCJbd-1629543900253)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821132545617.png)]

集群消费模式下,相同Consumer Group的每个Consumer实例平均分摊同一个Topic的消息。即每条消息只会被发送到Consumer Group中的某个Consumer。

  • 消息进度保存

  • 广播模式消费进度保存在consumer端。因为广播模式下consumer group中每个consumer都会消费所有消息,但它们的消费进度是不同。所以consumer各自保存各自的消费进度。

  • 集群模式消费进度保存在broker中。consumer group中的所有consumer共同消费同一个Topic中的消息,同一条消息只会被消费一次。消费进度会参与到了消费的负载均衡中,故消费进度是需要共享的。

下图是broker中存放的各个Topic的各个Queue的消费进度

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Bn1bWOti-1629543900254)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821132624336.png)]


3、Rebalance机制(再均衡)

Rebalance机制讨论的前提是:集群消费

  • 什么是Rebalance

Rebalance即再均衡,指的是,将⼀个Topic下的多个Queue在同⼀个Consumer Group中的多个Consumer间进行重新分配的过程

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YsNNu4Ms-1629543900255)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821132658584.png)]

Rebalance机制的本意是为了提升消息的并行消费能力。例如,⼀个Topic下5个队列,在只有1个消费者的情况下,这个消费者将负责消费这5个队列的消息。如果此时我们增加⼀个消费者,那么就可以给其中⼀个消费者分配2个队列,给另⼀个分配3个队列,从而提升消息的并行消费能力。

  • Rebalance限制

由于⼀个队列最多分配给⼀个消费者,因此当某个消费者组下的消费者实例数量大于队列的数量时,多余的消费者实例将分配不到任何队列。

  • Rebalance危害

Rebalance的在提升消费能力的同时,也带来一些问题:

  • 消费暂停:在只有一个Consumer时,其负责消费所有队列;在新增了一个Consumer后会触发Rebalance的发生。此时原Consumer就需要暂停部分队列的消费,等到这些队列分配给新的Consumer后,这些暂停消费的队列才能继续被消费。

  • 消费重复:Consumer 在消费新分配给自己的队列时,必须接着之前Consumer 提交的消费进度的offset继续消费。然而默认情况下,offset是异步提交的,这个异步性导致提交到Broker的offset与Consumer实际消费的消息并不一致。这个不一致的差值就是可能会重复消费的消息。

同步提交

consumer提交了其消费完毕的一批消息的offset给broker后,需要等待broker的成功ACK。当收到ACK后,consumer才会继续获取并消费下一批消息。在等待ACK期间,consumer是阻塞的。

异步提交

consumer提交了其消费完毕的一批消息的offset给broker后,不需要等待broker的成功ACK。consumer可以直接获取并消费下一批消息。

对于一次性读取消息的数量,需要根据具体业务场景选择一个相对均衡的是很有必要的。

数量过大,系统性能提升了,但产生重复消费的消息数量可能会增加;

数量过小,系统性能会下降,但被重复消费的消息数量可能会减少。

  • 消费突刺:由于Rebalance可能导致重复消费,如果需要重复消费的消息过多,或者因为Rebalance暂停时间过长从而导致积压了部分消息。消息积压,那么有可能会导致在Rebalance结束之后瞬间需要消费很多消息

  • Rebalance产生的原因

导致Rebalance产生的原因,无非就两个:消费者所订阅Topic的Queue数量发生变化,或消费者组中消费者的数量发生变化

1)Queue数量发生变化的场景

Broker扩容或缩容

Broker升级运维

Broker与NameServer间的网络异常

Queue扩容或缩容

2)消费者数量发生变化的场景

Consumer Group扩容或缩容

Consumer升级运维

Consumer与NameServer间网络异常

  • Rebalance过程

在Broker中维护着多个Map集合,这些集合中动态存放着当前Topic中Queue的信息、Consumer Group中Consumer实例的信息。一旦发现消费者所订阅的Queue数量发生变化,或消费者组中消费者的数量发生变化,立即向Consumer Group中的每个实例发出Rebalance通知。

TopicConfigManager:key是topic名称,value是TopicConfig。TopicConfig中维护着该Topic中所有Queue的数据。

ConsumerManager:key是Consumser Group Id,value是ConsumerGroupInfo。ConsumerGroupInfo中维护着该Group中所有Consumer实例数据。

ConsumerOffsetManager:key为Topic与订阅该Topic的Group的组合,即topic@group,value是一个内层Map。内层Map的key为QueueId,内层Map的value为该Queue的消费进度offset。

Consumer实例在接收到通知后会采用·Queue分配算法自己获取到相应的Queue,即由Consumer实例自主进行Rebalance

  • 与Kafka对比

在Kafka中,一旦发现出现了Rebalance条件,Broker会调用Group Coordinator来完成Rebalance

Coordinator是Broker中的一个进程。Coordinator会在Consumer Group中选出一个Group Leader。由这个Leader根据自己本身组情况完成Partition分区的再分配。这个再分配结果会上报给Coordinator,并由Coordinator同步给Group中的所有Consumer实例。

Kafka中的Rebalance是由Consumer Leader完成的。

RocketMQ中的Rebalance是由每个Consumer自身完成的,Group中不存在Leader。


4、Queue分配算法

一个Topic中的Queue只能由Consumer Group中的一个Consumer进行消费,而一个Consumer可以同时消费多个Queue中的消息。那么Queue与Consumer间的配对关系是如何确定的,即Queue要分配给哪个Consumer进行消费,也是有算法策略的。常见的有四种策略。这些策略是通过在创建Consumer时的构造器传进去的。

  • 平均分配策略

在这里插入图片描述

该算法是要根据avg = QueueCount / ConsumerCount的计算结果进行分配的。如果能够整除,则按顺序将avg个Queue逐个分配Consumer;如果不能整除,则将多余出的Queue按照Consumer顺序逐个分配。

该算法即,先计算好每个Consumer应该分得几个Queue,然后再依次将这些数量的Queue逐个分配个Consumer。

  • 环形平均策略

环形平均算法是指,根据消费者的顺序,依次在由queue队列组成的环形图中逐个分配

在这里插入图片描述

该算法不用事先计算,每个Consumer需要分配几个Queue,直接一个一个分即可。

  • 一致性hash策略

在这里插入图片描述

该算法会将consumer的hash值作为Node节点存放到hash环上,然后将queue的hash值也放到hash环上,通过顺时针方向,距离queue最近的那个consumer就是该queue要分配的consumer。

该算法存在的问题:分配不均

  • 同机房策略

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iwixID8K-1629543900260)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133132845.png)]

该算法会根据queue的部署机房位置和consumer的位置,过滤出当前consumer相同机房的queue。然后按照平均分配策略或环形平均策略对同机房queue进行分配。如果没有同机房queue,则按照平均分配策略或环形平均策略对所有queue进行分配。

  • 对比

一致性hash算法存在的问题

两种平均分配策略的分配效率较高,一致性hash策略的较低。因为一致性hash算法较复杂。

另外,一致性hash策略分配的结果也很大可能上存在不平均的情况。

一致性hash算法存在的意义

其可以有效减少由于消费者组扩容或缩容所带来的大量的Rebalance。避免减少Rebalance

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uY6PXbt2-1629543900262)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133159792.png)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8KokGylQ-1629543900263)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133203029.png)]

一致性hash算法的应用场景

Consumer数量变化较频繁的场景。


5、至少一次原则

RocketMQ有一个原则:每条消息必须要被成功消费一次。

那么什么是成功消费呢?Consumer在消费完消息后会向其消费进度记录器提交其消费消息的offset,offset被成功记录到记录器中,那么这条消费就被成功消费了。

什么是消费进度记录器?

对于广播消费模式来说,Consumer本身就是消费进度记录器

对于集群消费模式来说,Broker消费进度记录器


五、订阅关系的一致性


订阅关系的一致性指的是,同一个消费者组(Group ID相同)下所有Consumer实例所订阅的Topic与Tag及对消息的处理逻辑必须完全一致。否则,消息消费的逻辑就会混乱,甚至导致消息丢失。

1、正确订阅关系

多个消费者组订阅了多个Topic,并且每个消费者组里的多个消费者实例的订阅关系保持了一致。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ae4nzoFx-1629543900265)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133319556.png)]


2、错误订阅关系

一个消费者组订阅了多个Topic,但是该消费者组里的多个Consumer实例的订阅关系并没有保持一致。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MeWHKlJX-1629543900266)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133333111.png)]

  • 订阅了不同Topic

该例中的错误在于,同一个消费者组中的两个Consumer实例订阅了不同的Topic。

Consumer实例1-1:(订阅了topic为jodie_test_A,tag为所有的消息)

Properties properties = new Properties();

properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_1”);

Consumer consumer = ONSFactory.createConsumer(properties);

consumer.subscribe(“jodie_test_A”, “*”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});

Consumer实例1-2:(订阅了topic为jodie_test_B,tag为所有的消息)

Properties properties = new Properties();

properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_1”);

Consumer consumer = ONSFactory.createConsumer(properties);

consumer.subscribe(“jodie_test_B”, “*”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});

  • 订阅了不同Tag

该例中的错误在于,同一个消费者组中的两个Consumer订阅了相同Topic的不同Tag。

Consumer实例2-1:(订阅了topic为jodie_test_A,tag为TagA的消息)

Properties properties = new Properties();

properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_2”);

Consumer consumer = ONSFactory.createConsumer(properties);

consumer.subscribe(“jodie_test_A”, “TagA”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});

Consumer实例2-2:(订阅了topic为jodie_test_A,tag为所有的消息)

Properties properties = new Properties();

properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_2”);

Consumer consumer = ONSFactory.createConsumer(properties);

consumer.subscribe(“jodie_test_A”, “*”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});

  • 订阅了不同数量的Topic

该例中的错误在于,同一个消费者组中的两个Consumer订阅了不同数量的Topic。

Consumer实例3-1:(该Consumer订阅了两个Topic)

Properties properties = new Properties();

properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_3”);

Consumer consumer = ONSFactory.createConsumer(properties);

consumer.subscribe(“jodie_test_A”, “TagA”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});

consumer.subscribe(“jodie_test_B”, “TagB”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});

Consumer实例3-2:(该Consumer订阅了一个Topic)

Properties properties = new Properties();

properties.put(PropertyKeyConst.GROUP_ID, “GID_jodie_test_3”);

Consumer consumer = ONSFactory.createConsumer(properties);

consumer.subscribe(“jodie_test_A”, “TagB”, new MessageListener() {

public Action consume(Message message, ConsumeContext context) {

System.out.println(message.getMsgID());

return Action.CommitMessage;

}

});


六、offset管理


这里的offset指的是Consumer的消费进度offset

消费进度offset是用来记录每个Queue的不同消费组的消费进度的。根据消费进度记录器的不同,可以分为两种模式:本地模式远程模式

1、offset本地管理模式

当消费模式为广播消费时,offset使用本地模式存储。因为每条消息会被所有的消费者消费,每个消费者管理自己的消费进度,各个消费者之间不存在消费进度的交集。所以每个消费者都将消费进度记录在自己本地

Consumer在广播消费模式下offset相关数据以json的形式持久化到Consumer本地磁盘文件中,默认文件路径为当前

用户主目录下的.rocketmq_offsets/${clientId}/${group}/Offsets.json。其中 c l i e n t I d 为 当 前 消 费 者 i d , 默 认 为 i p @ D E F A U L T ; {clientId}为当前消费者id,默认为ip@DEFAULT; clientId为当前消费者id,默认为ip@DEFAULT;{group}为消费者组名称。


2、offset远程管理模式

当消费模式为集群消费时,offset使用远程模式管理。因为所有Cosnumer实例对消息采用的是均衡消费所有Consumer共享Queue的消费进度。消费进度被记录在broker中

Consumer在集群消费模式下offset相关数据以json的形式持久化到Broker磁盘文件中,文件路径为当前用户主目录下的store/config/consumerOffset.json。

Broker启动时会加载这个文件,并写入到一个双层Map(ConsumerOffsetManager)。外层map的key为topic@group,value为内层map。内层map的key为queueId,value为offset。当发生Rebalance时,新的Consumer会从该Map中获取到相应的数据来继续消费。

集群模式下offset采用远程管理模式,主要是为了保证Rebalance机制,不然新的consumer就无法获取到之前consumer的消费进度。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pHfsxjR0-1629543900268)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821184744103.png)]


3、offset用途

消费者是如何从最开始持续消费消息的?消费者要消费的第一条消息的起始位置是用户自己通过consumer.setConsumeFromWhere()方法指定的。

在Consumer启动后,其要消费的第一条消息的起始位置常用的有三种,这三种位置可以通过枚举类型常量设置。这个枚举类型为ConsumeFromWhere。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D8IG0kPZ-1629543900269)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133706666.png)]

CONSUME_FROM_LAST_OFFSET:从queue的当前最后一条消息开始消费

CONSUME_FROM_FIRST_OFFSET:从queue的第一条消息开始消费

CONSUME_FROM_TIMESTAMP:从指定的具体时间戳位置的消息开始消费。这个具体时间戳是通过另外一个语句指定的 。consumer.setConsumeTimestamp(“20210701080000”) yyyyMMddHHmmss

当消费完一批消息后,Consumer会提交其消费进度offset给Broker,Broker在收到消费进度后会将其更新到那个双层Map(ConsumerOffsetManager)及consumerOffset.json文件中,然后向该Consumer进行ACK,而ACK内容中包含三项数据:当前消费队列的最小offset(minOffset)、最大offset(maxOffset)、及下次消费的起始offset(nextBeginOffset)。


4、重试队列

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GZMiFLDS-1629543900271)(C:/Users/PePe/AppData/Roaming/Typora/typora-user-images/image-20210821133811215.png)]

当rocketMQ对消息的消费出现异常时,会将发生异常的消息的offset提交到Broker中的重试队列。系统在发生消息消费异常时会为当前的topic@group创建一个重试队列,该队列以%RETRY%开头,到达重试时间后进行消费重试。


5、offset的同步提交与异步提交

集群消费模式下,Consumer消费完消息后会向Broker提交消费进度offset,其提交方式分为两种:

  • 同步提交

消费者在消费完一批消息后会向broker提交这些消息的offset,然后等待broker的成功响应。若在等待超时之前收到了成功响应,则继续读取下一批消息进行消费(从ACK中获取nextBeginOffset)。若没有收到响应,则会重新提交,直到获取到响应。而在这个等待过程中,消费者是阻塞的。其严重影响了消费者的吞吐量。

  • 异步提交

消费者在消费完一批消息后向broker提交offset,但无需等待Broker的成功响应,可以继续读取并消费下一批消息。这种方式增加了消费者的吞吐量。但需要注意,broker在收到提交的offset后,还是会向消费者进行响应的。可能还没有收到ACK,此时Consumer会从Broker中直接获取nextBeginOffset


七、消费幂等


1、什么是消费幂等

当出现消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次消费并未对业务系统产生任何负面影响,那么这个消费过程就是消费幂等的。

幂等若某操作执行多次与执行一次对系统产生的影响是相同的,则称该操作是幂等的

在互联网应用中,尤其在网络不稳定的情况下,消息很有可能会出现重复发送或重复消费。如果重复的消息可能会影响业务处理,那么就应该对消息做幂等处理。


2、消息重复的场景分析

什么情况下可能会出现消息被重复消费呢?最常见的有以下三种情况

  • 发送时消息重复

当一条消息已被成功发送到Broker并完成持久化,此时出现了网络闪断,从而导致Broker对Producer应答失败。 如果此时Producer意识到消息发送失败并尝试再次发送消息,此时Broker中就可能会出现两条内容相同并且Message ID也相同的消息(此时的msgId不是生存的,而是刚才没发送成功是msgId),那么后续Consumer就一定会消费两次该消息。

  • 消费时消息重复

消息已投递到Consumer并完成业务处理,当Consumer给Broker反馈应答时网络闪断,Broker没有接收到消费成功响应。为了保证消息至少被消费一次的原则,Broker将在网络恢复后再次尝试投递之前已被处理过的消息。此时消费者就会收到与之前处理过的内容相同、Message ID也相同的消息。

  • Rebalance时消息重复

当Consumer Group中的Consumer数量发生变化时,或其订阅的Topic的Queue数量发生变化时,会触发Rebalance,此时Consumer可能会收到曾经被消费过的消息。


3、通用解决方案

  • 两要素

幂等解决方案的设计中涉及到两项要素:幂等令牌,与 唯一性处理。只要充分利用好这两要素,就可以设计出好的幂等解决方案。

  • 幂等令牌:是生产者和消费者两者中的既定协议,通常指具备唯⼀业务标识的字符串。例如,订单号、流水号。一般由Producer随着消息一同发送来的。

  • 唯一性处理:服务端通过采用⼀定的算法策略,保证同⼀个业务逻辑不会被重复执行成功多次。例如,对同一笔订单的多次支付操作,只会成功一次。

  • 解决方案

对于常见的系统,幂等性操作的通用性解决方案是:

  1. 首先通过缓存去重。在缓存中如果已经存在了某幂等令牌,则说明本次操作是重复性操作;若缓存没有命中,则进入下一步。

  2. 在唯一性处理之前,先在数据库中查询幂等令牌作为索引的数据是否存在。若存在,则说明本次操作为重复性操作;若不存在,则进入下一步。

  3. 在同一事务中完成三项操作:唯一性处理后,将幂等令牌写入到缓存,并将幂等令牌作为唯一索引的数据写入到DB中。

第1步已经判断过是否是重复性操作了,为什么第2步还要再次判断?能够进入第2步,说明已经不是重复操作了,第2次判断是否重复?

当然不重复。一般缓存中的数据是具有有效期的。缓存中数据的有效期一旦过期,就是发生缓存穿透,使请求直接就到达了DBMS。减轻DB的压力

  • 解决方案举例

以支付场景为例:

  1. 当支付请求到达后,首先在Redis缓存中却获取key为支付流水号的缓存value。

value不空,则说明本次支付是重复操作,业务系统直接返回调用侧重复支付标识;

value为空,则进入下一步操作

  1. 到DBMS中根据支付流水号查询是否存在相应实例。

存在,则说明本次支付是重复操作,业务系统直接返回调用侧重复支付标识;

不存在,则说明本次操作是首次操作,进入下一步完成唯一性处理

  1. 在分布式事务中完成【唯一性处理】三项操作:
  • 完成支付任务

  • 将当前支付流水号作为key,任意字符串作为value,通过set(key, value, expireTime)将数据写入到Redis缓存

  • 将当前支付流水号作为主键,与其它相关数据共同写入到DBMS


4、消费幂等的实现

消费幂等的解决方案很简单:为消息指定不会重复的唯一标识。因为Message ID有可能出现重复的情况,所以真正安全的幂等处理,不建议以Message ID作为处理依据。最好的方式是以业务唯一标识作为幂等处理的关键依据,而业务的唯一标识可以通过消息Key设置。以支付场景为例,可以将消息的Key设置为订单号,作为幂等处理的依据。具体代码示例如下:

Message message = new Message();

message.setKey(“ORDERID_100”);//唯一订单号

SendResult sendResult = producer.send(message);

消费者收到消息时可以根据消息的Key即订单号来实现消费幂等:

consumer.registerMessageListener(new MessageListenerConcurrently() {

@Override

public ConsumeConcurrentlyStatus consumeMessage(List msgs,ConsumeConcurrentlyContext context) {

for(MessageExt msg:msgs){

String key = msg.getKeys();

// 根据业务唯一标识Key做幂等处理

// ……

}

//返回处理成功响应

return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;

}

});

RocketMQ能够保证消息不丢失,但不能保证消息不重复。


八、消息堆积与消费延迟


1、概念

消息处理流程中,如果Consumer的消费速度跟不上Producer的发送速度,MQ中未处理的消息会越来越多(进的多出的少),这部分消息就被称为堆积消息。消息出现堆积进而会造成消息的消费延迟

以下场景需要重点关注消息堆积和消费延迟问题:

  • 业务系统上下游能力不匹配造成的持续堆积,且无法自行恢复。

  • 业务系统对消息的消费实时性要求较高,即使是短暂的堆积造成的消费延迟也无法接受。


2、产生原因分析

Kafka进阶篇知识点

image

Kafka高级篇知识点

image

44个Kafka知识点(基础+进阶+高级)解析如下

image

由于篇幅有限,小编已将上面介绍的**《Kafka源码解析与实战》、Kafka面试专题解析、复习学习必备44个Kafka知识点(基础+进阶+高级)都整理成册,全部都是PDF文档**

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

msgs,ConsumeConcurrentlyContext context) {

for(MessageExt msg:msgs){

String key = msg.getKeys();

// 根据业务唯一标识Key做幂等处理

// ……

}

//返回处理成功响应

return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;

}

});

RocketMQ能够保证消息不丢失,但不能保证消息不重复。


八、消息堆积与消费延迟


1、概念

消息处理流程中,如果Consumer的消费速度跟不上Producer的发送速度,MQ中未处理的消息会越来越多(进的多出的少),这部分消息就被称为堆积消息。消息出现堆积进而会造成消息的消费延迟

以下场景需要重点关注消息堆积和消费延迟问题:

  • 业务系统上下游能力不匹配造成的持续堆积,且无法自行恢复。

  • 业务系统对消息的消费实时性要求较高,即使是短暂的堆积造成的消费延迟也无法接受。


2、产生原因分析

Kafka进阶篇知识点

[外链图片转存中…(img-sXzLBNn1-1715625429757)]

Kafka高级篇知识点

[外链图片转存中…(img-4xLCJpE1-1715625429757)]

44个Kafka知识点(基础+进阶+高级)解析如下

[外链图片转存中…(img-8rZBrkK5-1715625429758)]

由于篇幅有限,小编已将上面介绍的**《Kafka源码解析与实战》、Kafka面试专题解析、复习学习必备44个Kafka知识点(基础+进阶+高级)都整理成册,全部都是PDF文档**

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值