难道这样就够了吗?不,远远不够!
提前多熟悉阿里往年的面试题肯定是对面试有很大的帮助的,但是作为技术性职业,手里有实打实的技术才是你面对面试官最有用的利器,这是从内在散发出来的自信。
备战阿里时我花的最多的时间就是在学习技术上,占了我所有学习计划中的百分之70,这是一些我学习期间觉得还是很不错的一些学习笔记
我为什么要写这篇文章呢,其实我觉得学习是不能停下脚步的,在网络上和大家一起分享,一起讨论,不单单可以遇到更多一样的人,还可以扩大自己的眼界,学习到更多的技术,我还会在csdn、博客、掘金等网站上分享技术,这也是一种学习的方法。
今天就分享到这里了,谢谢大家的关注,以后会分享更多的干货给大家!
因此在高并发情况下,当有大量的请求进来时,大部分的请求都会进行排队等待。为了保证数据库的稳定性,事务的超时时间往往又设置得很小,所以就会出现大量事务被中断的情况。
除了阻塞等待之外,因为订单没有删除操作,所以这张锁表的数据将会逐渐累积,我们需要设置另外一个线程,隔一段时间就去删除该表中的过期订单,这就增加了业务的复杂度。除了这种幂等性校验的分布式锁,有一些单纯基于数据库实现的分布式锁代码块或对象,是需要在锁释放时,删除或修改数据的。如果在获取锁之后,锁一直没有获得释放,即数据没有被删除或修改,这将会引发死锁问题。
Zookeeper 实现分布式锁
除了数据库实现分布式锁的方式以外,我们还可以基于 Zookeeper 实现。Zookeeper 是一种提供“分布式服务协调“的中心化服务,正是 Zookeeper 的以下两个特性,分布式应用程序才可以基于它实现分布式锁功能。
顺序临时节点: Zookeeper 提供一个多层级的节点命名空间(节点称为 Znode),每个节点都用一个以斜杠(/)分隔的路径来表示,而且每个节点都有父节点(根节点除外),非常类似于文件系统。
节点类型可以分为持久节点(PERSISTENT )、临时节点(EPHEMERAL),每个节点还能被标记为有序性(SEQUENTIAL),一旦节点被标记为有序性,那么整个节点就具有顺序自增的特点。一般我们可以组合这几类节点来创建我们所需要的节点,例如,创建一个持久节点作为父节点,在父节点下面创建临时节点,并标记该临时节点为有序性。
Watch 机制: Zookeeper 还提供了另外一个重要的特性,Watcher(事件监听器)。ZooKeeper 允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知给用户。
我们熟悉了 Zookeeper 的这两个特性之后,就可以看看 Zookeeper 是如何实现分布式锁的了。
首先,我们需要建立一个父节点,节点类型为持久节点(PERSISTENT) ,每当需要访问共享资源时,就会在父节点下建立相应的顺序子节点,节点类型为临时节点(EPHEMERAL),且标记为有序性(SEQUENTIAL),并且以临时节点名称 + 父节点名称 + 顺序号组成特定的名字。
在建立子节点后,对父节点下面的所有以临时节点名称 name 开头的子节点进行排序,判断刚刚建立的子节点顺序号是否是最小的节点,如果是最小节点,则获得锁。
如果不是最小节点,则阻塞等待锁,并且获得该节点的上一顺序节点,为其注册监听事件,等待节点对应的操作获得锁。
当调用完共享资源后,删除该节点,关闭 zk,进而可以触发监听事件,释放该锁。
以上实现的分布式锁是严格按照顺序访问的并发锁。一般我们还可以直接引用 Curator 框架来实现 Zookeeper 分布式锁,代码如下:
InterProcessMutex lock = new InterProcessMutex(client, lockPath);
if ( lock.acquire(maxWait, waitUnit) )
{
try
{
// do some work inside of the critical section here
}
finally
{
lock.release();
}
}
Zookeeper 实现的分布式锁,例如相对数据库实现,有很多优点。Zookeeper 是集群实现,可以避免单点问题,且能保证每次操作都可以有效地释放锁,这是因为一旦应用服务挂掉了,临时节点会因为 session 连接断开而自动删除掉。
由于频繁地创建和删除结点,加上大量的 Watch 事件,对 Zookeeper 集群来说,压力非常大。且从性能上来说,其与接下来我要讲的 Redis 实现的分布式锁相比,还是存在一定的差距。
Redis 实现分布式锁
相对于前两种实现方式,基于 Redis 实现的分布式锁是最为复杂的,但性能是最佳的。
大部分开发人员利用 Redis 实现分布式锁的方式,都是使用 SETNX+EXPIRE 组合来实现,在 Redis 2.6.12 版本之前,具体实现代码如下:
public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
Long result = jedis.setnx(lockKey, requestId);//设置锁
if (result == 1) {//获取锁成功
// 若在这里程序突然崩溃,则无法设置过期时间,将发生死锁
jedis.expire(lockKey, expireTime);//通过过期时间删除锁
return true;
}
return false;
}
setnx 函数的返回值有 0 和 1:
-
返回 1,说明该服务器获得锁,setnx 将 key 对应的 value 设置为当前时间 + 锁的有效时间。
-
返回 0,说明其他服务器已经获得了锁,进程不能进入临界区。该服务器可以不断尝试 setnx 操作,以获得锁。
这种方式实现的分布式锁,是通过 setnx() 方法设置锁,如果 lockKey 存在,则返回失败,否则返回成功。设置成功之后,为了能在完成同步代码之后成功释放锁,方法中还需要使用 expire() 方法给 lockKey 值设置一个过期时间,确认 key 值删除,避免出现锁无法释放,导致下一个线程无法获取到锁,即死锁问题。
如果程序在设置过期时间之前、设置锁之后出现崩溃,此时如果 lockKey 没有设置过期时间,将会出现死锁问题。
在 Redis 2.6.12 版本后 SETNX 增加了过期时间参数:
private static final String LOCK_SUCCESS = “OK”;
private static final String SET_IF_NOT_EXIST = “NX”;
private static final String SET_WITH_EXPIRE_TIME = “PX”;
/**
-
尝试获取分布式锁
-
@param jedis Redis客户端
-
@param lockKey 锁
-
@param requestId 请求标识
-
@param expireTime 超期时间
-
@return 是否获取成功
*/
public static boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {
String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);
if (LOCK_SUCCESS.equals(result)) {
return true;
}
return false;
}
我们也可以通过 Lua 脚本来实现锁的设置和过期时间的原子性,再通过 jedis.eval() 方法运行该脚本:
// 加锁脚本
private static final String SCRIPT_LOCK = “if redis.call(‘setnx’, KEYS[1], ARGV[1]) == 1 then redis.call(‘pexpire’, KEYS[1], ARGV[2]) return 1 else return 0 end”;
// 解锁脚本
private static final String SCRIPT_UNLOCK = “if redis.call(‘get’, KEYS[1]) == ARGV[1] then return redis.call(‘del’, KEYS[1]) else return 0 end”;
Redis 通常可以使用 setnx(key, value) 函数来实现分布式锁。key 和 value 就是基于缓存的分布式锁的两个属性,其中 key 表示锁 id,value = currentTime + timeOut,表示当前时间 + 超时时间。也就是说,某个进程获得 key 这把锁后,如果在 value 的时间内未释放锁,系统就会主动释放锁。
虽然 SETNX 方法保证了设置锁和过期时间的原子性,但如果我们设置的过期时间比较短,而执行业务时间比较长,就会存在锁代码块失效的问题。我们需要将过期时间设置得足够长,来保证以上问题不会出现。
这个方案是目前最优的分布式锁方案,但如果是在 Redis 集群环境下,依然存在问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Master 节点获取到锁后,在没有同步到其它节点时,Master 节点崩溃了,此时新的 Master 节点依然可以获取锁,所以多个应用服务可以同时获取到锁。
Redlock 算法
Redisson 由 Redis 官方推出,它是一个在 Redis 的基础上实现的 Java 驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的 Java 常用对象,还提供了许多分布式服务。Redisson 是基于 netty 通信框架实现的,所以支持非阻塞通信,性能相对于我们熟悉的 Jedis 会好一些。
Redisson 中实现了 Redis 分布式锁,且支持单点模式和集群模式。在集群模式下,Redisson 使用了 Redlock 算法,避免在 Master 节点崩溃切换到另外一个 Master 时,多个应用同时获得锁。我们可以通过一个应用服务获取分布式锁的流程,了解下 Redlock 算法的实现:
在不同的节点上使用单个实例获取锁的方式去获得锁,且每次获取锁都有超时时间,如果请求超时,则认为该节点不可用。当应用服务成功获取锁的 Redis 节点超过半数(N/2+1,N 为节点数) 时,并且获取锁消耗的实际时间不超过锁的过期时间,则获取锁成功。
一旦获取锁成功,就会重新计算释放锁的时间,该时间是由原来释放锁的时间减去获取锁所消耗的时间;而如果获取锁失败,客户端依然会释放获取锁成功的节点。具体的代码实现如下:
- 首先引入 jar 包:
org.redisson
redisson
3.8.2
最后
面试是跳槽涨薪最直接有效的方式,马上金九银十来了,各位做好面试造飞机,工作拧螺丝的准备了吗?
掌握了这些知识点,面试时在候选人中又可以夺目不少,暴击9999点。机会都是留给有准备的人,只有充足的准备,才可能让自己可以在候选人中脱颖而出。
可能让自己可以在候选人中脱颖而出。
[外链图片转存中…(img-o1TWjV2P-1715312296373)]
[外链图片转存中…(img-TTkjl4Ue-1715312296374)]