最新滑动验证码,让我变成虫子教你怎么爬(1)

本文介绍了如何使用Python的OpenCV库进行图像处理,包括GaussianBlur模糊、Canny边缘检测和轮廓检测。作者通过示例展示了如何筛选特定大小的轮廓,用于目标识别。同时强调了系统化学习和社区支持在技术提升中的重要性。
摘要由CSDN通过智能技术生成

import cv2 as cv

image = cv.imread(image_path)

blurred = cv.GaussianBlur(image, (5, 5), 0)

cv.imshow(“blurred”, blurred)

处理后的效果

接着用Canny边缘检测到得到一个包含“窄边界”的二值图像。所谓二值图像就是黑白图,只有黑色和白色。

canny = cv.Canny(blurred, 200, 400)

cv.imshow(“canny”, canny)

轮廓检测

contours, hierarchy = cv.findContours(canny, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE)

for i, contour in enumerate(contours): # 所有轮廓

x, y, w, h = cv.boundingRect(contour) # 外接矩形

cv.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)

cv.imshow(‘image’, image)

找出所有的轮廓,并用红色线框将其绘制标识出来了,看出来大大小小有几十个轮廓

剩下的问题就好办了,我们只需要对轮廓的面积或者周长范围做限制,就能过滤出目标轮廓的位置, 前提是我们对目标位置的轮廓大小是预先确定的。

for i, contour in enumerate(contours): # 所有轮廓

if 6000 < cv.contourArea(contour) <= 8000 and 300 < cv.arcLength(contour, True) < 500:

x, y, w, h = cv.boundingRect(contour) # 外接矩形

print(x, y, w, h)

cv.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)

cv.imshow(‘image’, image)

找目标缺口,第一个可能是滑块

if x <= 200:

continue

return x + int(w / 2), 675
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值