2021年Java中高级面试必备知识点总结
在这个部分总结了2019年到目前为止Java常见面试问题,取其面试核心编写成这份文档笔记,从中分析面试官的心理,摸清面试官的“套路”,可以说搞定90%以上的Java中高级面试没一点难度。
本节总结的内容涵盖了:消息队列、Redis缓存、分库分表、读写分离、设计高并发系统、分布式系统、高可用系统、SpringCloud微服务架构等一系列互联网主流高级技术的知识点。
目录:
(上述只是一个整体目录大纲,每个点里面都有如下所示的详细内容,从面试问题——分析面试官心理——剖析面试题——完美解答的一个过程)
部分内容:
对于每一个做技术的来说,学习是不能停止的,小编把2019年到目前为止Java的核心知识提炼出来了,无论你现在是处于什么阶段,如你所见,这份文档的内容无论是对于你找面试工作还是提升技术广度深度都是完美的。
不想被后浪淘汰的话,赶紧搞起来吧,高清完整版一共是888页,需要的话可以点赞+关注
|
最后存入RecordAccumulator中的消息将会是这样。
|
二、append方法解析
RecordAccumulator的构造方法中通过CopyOnWriteMap初始化了上述谈到的batches对象,同时还初始化了其他的属性内容,这里不再赘述其构造的过程,而是着重分析上一篇中遗留的内容:KafkaProducer是如何通过accumulator.append方法将消息追加到RecordAccumulator消息累加器中的。
public RecordAppendResult append(TopicPartition tp,
long timestamp,
byte[] key,
byte[] value,
Header[] headers,
Callback callback,
long maxTimeToBlock) throws InterruptedException {
//并发数加1,统计正在向RecordAccumulator中追加消息的线程数
appendsInProgress.incrementAndGet();
ByteBuffer buffer = null;
if (headers == null) headers = Record.EMPTY_HEADERS;
try {
//查找TopicPartition对应的Deque,如果没有则创建
Deque dq = getOrCreateDeque(tp);
//追加消息时需要加锁
synchronized (dq) {
if (closed)
throw new KafkaException(“Producer closed while send in progress”);
//尝试往Deque中最后一个ProducerBatch中追加消息记录
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null)
//消息追加成功返回结果
return appendResult;
}
//来到这一步说明上面消息追加失败
byte maxUsableMagic = apiVersions.maxUsableProduceMagic();
//获取要创建的ProducerBatch的内存大小
int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers));
log.trace(“Allocating a new {} byte message buffer for topic {} partition {}”, size, tp.topic(), tp.partition());
//从BufferPool中申请空间用于后面创建新的ProducerBatch
buffer = free.allocate(size, maxTimeToBlock);
//和上面一样,追加消息时需要加锁
synchronized (dq) {
// Need to check if producer is closed again after grabbing the dequeue lock.
if (closed)
throw new KafkaException(“Producer closed while send in progress”);
//在创建新的ProducerBatch之前再次尝试往Deque中最后一个ProducerBatch中追加消息记录,说不定现在成功了呢
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null) {
//消息追加成功返回结果
return appendResult;
}
//如果消息还是追加失败了。。。
//构造MemoryRecordsBuilder,消息将会存入它拥有的MemoryRecords对象
MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);
//创建ProducerBatch
ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());
//使用batch.tryAppend追加消息
FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));
//将刚创建的ProducerBatch放入Deque双端队列尾部
dq.addLast(batch);
incomplete.add(batch);
//到这里消息已经追加成功,将buffer置空
buffer = null;
//返回结果
return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);
}
} finally {
if (buffer != null)
//释放之前申请的新空间
free.deallocate(buffer);
//结束,并发数减1
appendsInProgress.decrementAndGet();
}
}
上面的代码已经给出了注释,现将这段代码的流程总结如下:
|
这段代码的核心部分便是batch.tryAppend方法,下面是该方法的部分源码,首先是检查了一下消息存储器的剩余空间是否充足,若不足则直接返回null,后面走申请空间新建ProducerBatch的流程。如果空间剩余充足则MemoryRecordsBuilder会调用append方法进行消息追加。
public FutureRecordMetadata tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers, Callback callback, long now) {
//检查消息存储器中剩余空间是否充足,若空间不足则直接返回null
if (!recordsBuilder.hasRoomFor(timestamp, key, value, headers)) {
return null;
} else {
//消息写入
Long checksum = this.recordsBuilder.append(timestamp, key, value, headers);
……………………
return future;
}
}
然后像洋葱一样不断剥开append方法的皮,,,,,发现MemoryRecordsBuilder最终会根据KafkaProducer客户端版本的不同去调用下面两个方法之一:appendDefaultRecord和appendLegacyRecord。
private void appendDefaultRecord(long offset, long timestamp, ByteBuffer key, ByteBuffer value,
Header[] headers) throws IOException {
………………
int sizeInBytes = DefaultRecord.writeTo(appendStream, offsetDelta, timestampDelta, key, value, headers);
recordWritten(offset, timestamp, sizeInBytes);
}
private long appendLegacyRecord(long offset, long timestamp, ByteBuffer key, ByteBuffer value) throws IOException {
………………
long crc = LegacyRecord.write(appendStream, magic, timestamp, key, value, CompressionType.NONE, timestampType);
recordWritten(offset, timestamp, size + Records.LOG_OVERHEAD);
return crc;
}
难道这样就够了吗?不,远远不够!
提前多熟悉阿里往年的面试题肯定是对面试有很大的帮助的,但是作为技术性职业,手里有实打实的技术才是你面对面试官最有用的利器,这是从内在散发出来的自信。
备战阿里时我花的最多的时间就是在学习技术上,占了我所有学习计划中的百分之70,这是一些我学习期间觉得还是很不错的一些学习笔记
我为什么要写这篇文章呢,其实我觉得学习是不能停下脚步的,在网络上和大家一起分享,一起讨论,不单单可以遇到更多一样的人,还可以扩大自己的眼界,学习到更多的技术,我还会在csdn、博客、掘金等网站上分享技术,这也是一种学习的方法。
今天就分享到这里了,谢谢大家的关注,以后会分享更多的干货给大家!
ctEXLYI3-1715086092749)]
[外链图片转存中…(img-Ms7eVDxk-1715086092750)]