2024年Python最新机器学习之贝叶斯_贝叶斯算法背景(1)

本文探讨了利用Python进行机器学习时的贝叶斯算法,通过一个实际问题——穿长裤的学生中女生的比例,详细分析了条件概率和逆向概率的计算,揭示了在解决此类问题时总人数并不相关。并提供了Python学习资源和社区交流邀请。
摘要由CSDN通过智能技术生成
  • 我们日常所观察到的只是事物表面上的结果,因此我们需要
    提供一个猜测
问题

在这里插入图片描述

  • 条件
    • 男生:60%
    • 女生:40%
    • 男生总是穿长裤,女生则一半穿长裤一半穿裙子
      正向概率:随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大
      逆向概率:迎面走来一个穿长裤的学生,你只看得见他(她)穿的是否长裤,
      而无法确定他(她)的性别,你能够推断出他(她)是女生的概率是多大吗?
问题分析
  • 假设学校里面人的总数是 U 个
  • 穿长裤的(男生):U * P(Boy) * P(Pants|Boy)
    • P(Boy) 是男生的概率 = 60%
    • P(Pants|Boy) 是条件概率,即在 Boy 这个条件下穿长裤的
      概率是多大,这里是 100% ,因为所有男生都穿长裤
  • 穿长裤的(女生)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值