Logstash性能优化

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

这时候我们基本确定瓶颈在logstash上。logstash部署在服务端,主要处理接收filebeat(部署在节点机)推送的日志,对其进行正则解析,并将结构化日志传送给ES存储。对于每一行日志进行正则解析,需要耗费极大的计算资源。而节点CPU负载恰巧又不高,这个时候我们就要想办法拓宽logstash的pipeline了,毕竟我们一天要收集18亿条日志。

ELFK部署架构图如下所示:

这里写图片描述

影响logstash性能因素如下:

logstash是一个pipeline,数据流从input进来,在filter进行正则解析,然后通过output传输给ES。<

### Logstash 性能优化方法和最佳实践 #### 1. 使用合适的硬件资源 为了确保Logstash能够高效运行,建议部署在具有足够CPU核心数、内存以及快速磁盘I/O的服务器上。对于大规模的日志处理场景,考虑采用多台机器组成集群来分担负载。 #### 2. 整JVM参数 合理配置Java虚拟机(JVM)的各项参数有助于提升Logstash的整体表现。通常情况下应该增加堆大小(-Xms,-Xmx),并选择适合垃圾回收算法(GC),比如G1GC,以减少长时间停顿带来的负面影响[^1]。 #### 3. 利用管道(Pipeline)特性 创建高效的Logstash流水线是至关重要的一步。通过精心设计输入(Inputs)、过滤器(Filters) 和 输出(Outputs),可以使整个流程更加流畅。具体措施包括但不限于: - 尽量减少不必要的插件加载; - 对于相似类型的事件,在同一阶段完成尽可能多的操作; - 合理利用条件语句实现精准匹配与分流; - 如果可能的话尝试移除或简化复杂的grok模式解析过程; ```ruby input { beats { port => "5044" } } filter { if [type] == "apache-access" { grok { ... } #仅当类型为Apache访问日志时才执行此操作 } } ``` #### 4. 开启批量处理(Batch Processing) 启用批处理功能可以让Logstash一次性读取更多条目再做后续动作,从而降低每次单独用所带来的开销。一般推荐将batch_size设得较大一些,默认值为125,可根据实际情况整至更高水平。 #### 5. 关闭无用的功能模块和服务 关闭那些不打算使用的内置服务(如Web API),还有就是禁用任何未被充分利用到的输出端口(Output Plugins),这样可以节省系统资源用于更重要的任务之上。 #### 6. Elasticsearch索引模板(Index Template)预定义 提前准备好Elasticsearch中的索引映射关系[Index Templates],使得新建立起来的数据集自动应用最存储结构,进而加快写入速度并改善查询响应时间[^2]. #### 7. Redis缓存层设置 如果项目中有涉及到Redis作为中间件,则需要注意其相关配置项的选择。例如适当增大`maxmemory`值允许更多的临时数据驻留于内存之中而不至于频繁触发淘汰机制造成性能瓶颈[^3].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值