- 博客(3541)
- 资源 (34)
- 问答 (14)
- 收藏
- 关注
原创 【全网独家】libVLC 视频缩放(代码+测试部署)
return 0;return 0;return 0;通过本文,我们了解了如何使用 libVLC 实现视频缩放功能,包括从初步的基本操作到高级的自定义缩放算法示例。
2024-08-07 13:30:00
1197
原创 【全网独家】OpenCV 高级图像处理技术:图像金字塔,图像修复(Inpainting),图像去噪
图像金字塔是一种多尺度表示方法,将图像在不同分辨率下进行表示。常见的图像金字塔类型包括高斯金字塔和拉普拉斯金字塔。本文详细介绍了 OpenCV 中的高级图像处理技术,包括图像金字塔、图像修复(Inpainting)和图像去噪。通过具体的代码示例展示了如何在不同应用场景中使用这些技术,并提供了一个简单的 Flask Web 应用来演示其部署与测试。这些技术为解决复杂的图像处理任务提供了有效的方法。
2024-08-05 04:00:00
1479
原创 鱼弦博客专栏以及公众号
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
2024-05-19 13:49:10
910
原创 基于 MATLAB 的蛇群算法优化双向长短时记忆网络 (SO-BiLSTM) 的时序时间序列数据预测
SO-BiLSTM 算法是一种基于蛇群算法 (Snake Algorithm) 优化双向长短时记忆网络 (BiLSTM) 的时序时间序列数据预测算法。该算法使用蛇群算法来优化 BiLSTM 模型的参数,以提高预测准确性。BiLSTM 是一种用于处理序列数据的递归神经网络 (RNN) 模型,具有较强的学习时间序列依赖关系的能力。然而,BiLSTM 模型的参数通常需要人工选择,这可能会影响模型的性能。蛇群算法是一种模拟自然界中蛇群行为的优化算法,具有较强的全局搜索能力和较快的收敛速度。
2024-05-15 02:15:00
239
原创 FFMPEG音频视频开发:QT获取Android、Linux、Windows系统上的摄像头数据帧与声卡音频通过FFMPEG编码为MP4存储(v1.0)
本文详细介绍了如何使用QT框架在Android、Linux和Windows系统上采集摄像头视频帧和麦克风音频数据,并通过FFmpeg库将其编码并存储为MP4文件。我们可以使用FFmpeg将采集到的视频帧和音频数据按照H.264视频编码和AAC音频编码进行编码,并将编码后的数据multiplexing到MP4容器文件中。总的来说,随着视频应用的不断发展,对音视频采集、编码和存储技术有着更高的要求,未来可以在编解码算法、性能优化、功能拓展等多个方面进行创新和改进,以满足不同场景的需求。
2024-05-13 11:30:00
709
原创 Keras 深度学习实战——神经网络基础与模型训练过程详解
本教程将介绍 Keras 深度学习框架中的神经网络基础知识以及模型训练过程的详细步骤。Keras 深度学习框架提供了简单易用的工具来构建和训练神经网络模型,这使得深度学习技术可以更加广泛地应用。
2024-05-11 16:38:55
782
原创 sora 来临,50 位 AI 电影制作人打造《终结者 2》,永远彻底改变电影业!
OpenAI Sora 是一款文本转视频模型,它可以生成逼真和富有想象力的场景。它基于 OpenAI 的 DALL-E 2 模型,并进行了改进以生成视频。Sora 使用了一种称为“扩散模型”的技术来生成视频。扩散模型首先从一个随机噪声图像开始,然后逐渐将其“扩散”成目标图像。在 Sora 中,目标图像是一系列视频帧。
2024-02-27 18:40:57
763
2
原创 第一个 Spring Boot 项目实战:Todo List 应用雏形
我们将创建一个TodoItem类来表示待办事项。这个类也是一个JPA Entity,它将映射到数据库中的一张表。return id;} }@Entity@Id@PreUpdate原理解释@Entity: 标记此类为一个 JPA 实体。@Table: 指定该实体映射的数据库表名。@Id: 标记主键。: 指定主键的生成策略,IDENTITY。
2026-02-14 19:54:48
146
原创 Spring Boot 日志级别动态调整:Actuator 与 logback-spring.xml 结合
Spring Boot Actuator 是 Spring Boot 提供的生产级监控与管理模块,通过暴露一系列 HTTP 端点(如/health/metrics/loggers)或 JMX 接口,实现对应用运行状态的可观测性。其中,/loggers端点专门用于动态调整日志级别,支持查看和修改指定包/类的日志级别。通过 Spring Boot Actuator 与的结合,可实现日志级别的动态调整,兼顾“静态配置的兜底能力”和“动态调整的灵活性”。
2026-02-13 16:23:23
475
原创 Notion AI深度测评:如何重塑我的知识管理与工作流
在我的知识管理探索之路上,Notion AI的出现如同一场及时雨。作为一名技术写作者兼开发者,我长期面临着信息过载、知识碎片化以及内容创作效率低下的挑战。Notion AI不仅改变了我的工作方式,更从根本上重塑了我的知识处理范式。本文将深度解析Notion AI的技术实现、应用场景,并提供完整的代码示例,展示它如何成为我的"第二大脑"。Notion AI基于大型语言模型(LLM)构建,结合了GPT-4等先进技术,并与Notion的数据库系统深度集成。其核心技术栈包括:应用使用场景1. 智能知识提取与摘要
2026-02-13 10:48:59
614
原创 YOLOv11改进 | 引入SFSConv空间频率选择卷积(含SFSC3k2二次创新),空间频率特征协同作用,检测性能全面提升
本文提出在YOLOv11中引入SFSConv空间频率选择卷积模块,通过显式分离和动态融合空间域与频率域特征,解决传统卷积对多尺度目标检测的局限性。SFSConv包含空间频率分离、动态权重融合和协同特征重建三个核心机制,并进一步创新提出SFSC3k2结构,通过双路频率分支增强特征协同作用。该改进显著提升了YOLOv11在遥感、医学等多尺度复杂场景下的检测性能,实验显示在微小目标检测任务中mAP提升5%-10%。代码实现展示了SFSConv模块的核心逻辑及其在PyTorch中的高效实现。
2026-02-10 18:00:00
619
原创 RT-DETR 迁移学习实践:将 R50 预训练模型适配特定检测任务
本文提出分层迁移学习框架数据效率:500 张样本达 85% 全量数据精度,200 张样本仍优于从头训练;场景适配:工业/医疗/农业场景 mAP@0.5 分别达 92.3%/88.7%/85.5%;部署友好:微调后模型参数量不变,推理速度与原模型一致(42 FPS@T4)。核心价值:为 RT-DETR-R50 行业落地提供“预训练-迁移-部署”全流程方案,显著降低特定任务数据需求与训练成本,推动实时检测技术在工业、医疗等领域的规模化应用。部署建议。
2026-02-10 13:30:00
527
原创 Spring Boot 社区资源推荐:官网、GitHub、Stack Overflow
Spring Boot 的官网、GitHub 和 Stack Overflow 并非孤立的孤岛,而是一个相互关联、相辅相成的强大生态系统。它们分别代表了理论、实践与智慧的完美结合。以官网为“锚”,您可以建立坚实的知识体系,确保您的理解走在正确的轨道上。以 GitHub 为“镜”,您可以洞悉框架的内在机理,从知其然走向知其所以然,并与世界上最优秀的工程师们“神交”。以 Stack Overflow 为“桥”,您可以连接全球同好,高效地解决实际问题,并从他人的经验中汲取养分。
2026-02-10 09:20:47
732
原创 YOLOv11改进 | 引入轻量级CGHalfConv通道分组半卷积模块,更细致地区分目标的边缘纹理、颜色、结构等关键信息,有效提升检测精度
本文提出在YOLOv11中引入轻量级CGHalfConv通道分组半卷积模块,以更细致地区分目标的边缘纹理、颜色、结构等关键信息。该模块通过通道分组策略和半卷积操作,将输入特征图分为多组独立处理,在降低计算复杂度的同时增强特征表达能力。实验表明,CGHalfConv模块在智能安防(边缘模糊目标检测)、自动驾驶(颜色相近目标区分)、工业检测(结构复杂零件)等场景中均能显著提升检测精度(mAP提升5%-15%)。模块采用轻量化设计,易于集成到YOLOv11骨干网络中,为复杂场景下的目标检测提供了有效解决方案。
2026-02-09 13:30:00
699
原创 高速场景Apollo决策算法变道安全性与效率权衡仿真
摘要 本文基于Apollo决策框架,针对高速场景(车速≥80km/h)下变道安全性与效率的权衡问题,提出一种融合博弈论与风险评估的优化算法。通过Python构建多场景仿真平台,分析自由流、稳定车流、拥堵车流及匝道汇入四种典型场景下的变道决策。核心模型包括车辆动力学建模、碰撞风险量化评估(基于几何重叠检测)和效率指标计算,采用NSGA-II多目标优化算法求解帕累托最优解集。实验表明,该算法在保证碰撞概率≤1e-6的前提下,可使变道后平均速度提升5%-12%,为Apollo高速变道策略的参数调优提供数据支持。
2026-02-09 09:18:19
831
原创 YOLOv11改进 | YOLOv11引入LGLBlock大核局部-全局-局部模块,提取长距离语义和边缘细节信息
本文提出在YOLOv11中引入LGLBlock(局部-全局-局部)模块,通过三阶段设计(局部感知→全局建模→局部增强)解决目标检测中的特征提取问题。LGLBlock结合大核卷积的长距离感受野和局部卷积的细节捕捉能力,有效提升复杂场景下的检测性能。实验表明,该方法在智能安防、自动驾驶等场景中显著提升检测精度(mAP提升5%-10%),同时保持轻量化设计。代码实现展示了如何将LGLBlock集成到YOLOv11骨干网络中,为实际应用提供高效解决方案。
2026-02-08 17:31:16
738
原创 Unity (U3D) 摄像机 Camera 核心参数详解
Unity摄像机核心参数解析 Unity中的摄像机(Camera)是控制画面渲染的核心组件,其关键参数包括: Clear Flags:决定帧缓冲清除方式,如使用天空盒(Skybox)、纯色(Solid Color)或仅深度(Depth Only),后者常用于UI叠加。 Depth:控制多个摄像机的渲染顺序,数值越大越后渲染,用于分层显示(如3D场景+UI)。 Culling Mask:通过图层筛选渲染对象,优化性能或实现特定效果(如小地图只显示敌人)。 Viewport Rect:定义画面在屏幕中的显示区域
2026-02-08 15:40:03
740
原创 RT-DETR 系列模型的学术价值:对 DETR 技术研究的贡献
RT-DETR系列模型通过三重创新解决了原始DETR的计算复杂度高、收敛速度慢和实时性差三大痛点,推动了实时目标检测的技术进步。其贡献包括:1)采用高效Transformer架构(AIFI单层自注意力)降低计算复杂度;2)结合轻量化设计和动态策略(DCAM模块)实现算力动态分配;3)通过跨尺度特征融合(CCFF)提升小目标检测性能。实验表明,RT-DETR-r50在COCO数据集上达到58.3% mAP@0.5和42 FPS,为DETR研究提供了模块化设计范式和动态优化思路,成为连接理论研究和工业应用的关键
2026-02-07 13:18:59
396
原创 城市拥堵场景下Apollo决策算法跟驰稳定性仿真分析
dataclass"""车辆运动状态模型(单车)"""id: str # 车辆唯一IDx: float # 纵向位置(m)v: float # 纵向速度(m/s)a: float # 纵向加速度(m/s²)length: float = 4.8 # 车长(m)width: float = 1.8 # 车宽(m)lane_id: int = 0 # 车道ID"""更新车辆状态(欧拉积分)"""self.v = max(self.v, 0) # 防止倒车@dataclass。
2026-02-07 10:33:54
461
原创 智能座舱域控制器方案选型:单芯片 vs 多芯片架构性能对比
智能座舱域控制器选型需权衡单芯片与多芯片架构的优劣。单芯片方案具有集成度高、成本低(150-300美元)、开发周期短(12-18个月)和能效比优(3-5 TOPS/W)等优势,适合成本敏感型项目。多芯片方案则提供更高算力(100-300+ TOPS)、内存带宽(100-400 GB/s)和故障隔离能力,适用于高性能需求场景。主流芯片平台如高通SA8295P(5nm工艺,30 TOPS)和英伟达Orin X(200 TOPS)各具特点,选型需综合评估性能、成本、可靠性等关键指标。随着技术演进,舱驾融合和中央计
2026-02-06 18:00:00
1037
原创 YOLOv11改进 | 引入CFBlock增强长程依赖与全局语义建模,提升复杂场景检测精度
本文提出在YOLOv11目标检测模型中引入CFBlock模块,通过多尺度特征融合、动态上下文建模和全局语义增强,显著提升模型在复杂场景下的检测性能。CFBlock采用多分支卷积结构捕获不同尺度特征,结合全局注意力机制增强长程依赖建模,同时通过轻量化设计保持计算效率。实验表明,该改进在遮挡目标、小目标检测等任务中平均提升6-12%的mAP,适用于智能安防、自动驾驶等场景。代码实现展示了CFBlock模块及其与YOLOv11骨干网络的集成方法,为复杂场景目标检测提供了有效解决方案。
2026-02-06 13:30:00
567
原创 城市拥堵场景下Apollo决策算法跟驰稳定性仿真分析
dataclass"""车辆运动状态模型(单车)"""id: str # 车辆唯一IDx: float # 纵向位置(m)v: float # 纵向速度(m/s)a: float # 纵向加速度(m/s²)length: float = 4.8 # 车长(m)width: float = 1.8 # 车宽(m)lane_id: int = 0 # 车道ID"""更新车辆状态(欧拉积分)"""self.v = max(self.v, 0) # 防止倒车@dataclass。
2026-02-06 09:11:19
617
原创 RT-DETR 在交通违章检测中的应用:rtdetr-r50 的车牌与行为识别
本文探讨了RT-DETR-R50模型在交通违章检测中的应用,重点解决传统方法效率低、适应性差和实时性不足的问题。RT-DETR-R50通过多尺度特征融合、端到端检测架构和74FPS的实时性能,为车牌识别和违章行为检测提供了高效解决方案。文章详细介绍了模型在车牌检测、闯红灯识别、违法停车检测等场景的技术实现,包括数据准备、模型微调和OCR集成。实验表明,该方案能有效应对复杂交通场景中的小目标检测和实时处理需求,为智慧交通系统提供了可靠的技术支持。
2026-02-05 18:00:00
245
原创 Linkage Mapper 高阶算法优化:提升复杂景观分析精度
本文提出Linkage Mapper高阶算法优化方案,针对复杂景观连通性分析中的精度不足与效率低下问题,通过精细化阻力建模、算法并行化加速和多目标协同优化三大技术路径,显著提升分析性能。方案融合地形、植被等多源数据构建物理过程驱动阻力面,采用GPU并行与分布式计算加速处理大规模数据,并支持多物种差异化扩散需求与动态干扰情景。应用案例显示,该方法能识别10m级窄廊道,计算效率提升10-100倍,为生态保护规划提供高精度、高效率的技术支撑。
2026-02-05 13:30:00
406
原创 YOLOv11改进 | 引入FreqFusion频率感知特征融合模块,提升特征一致性与边界锐度
本文提出在YOLOv11中引入FreqFusion频率感知特征融合模块,通过显式分离空间域与频率域特征,解决传统特征融合中频率信息丢失、边界锐度不足等问题。FreqFusion采用二维DCT变换分解特征,通过动态权重网络自适应调整融合策略,在医学影像分割、遥感目标检测等任务中显著提升边界精度。实验表明,该模块使肿瘤分割Dice系数提升8%-12%,道路检测mAP提升6%-9%,且计算开销仅增加3%-5%,为实时目标检测提供更精细的特征融合方案。
2026-02-05 09:12:50
651
原创 YOLOv11改进:引入MFM调制融合模块与LEGM局部到全局模块
本文提出YOLOv11改进方案,通过引入MFM调制融合模块和LEGM局部到全局模块提升目标检测性能。MFM模块采用通道-空间双维度动态调制机制,增强关键特征并抑制冗余信息;LEGM模块构建局部到全局的层次化特征表示,实现精细结构与整体场景的协同利用。两项改进针对小目标检测、复杂背景干扰和多尺度目标并存等挑战场景,在保持实时性的同时显著提升检测精度。文中提供了MFM和LEGM的PyTorch实现代码,展示如何集成到YOLOv11架构中。实验表明,该方案在无人机航拍、交通监控和工业质检等应用场景中具有显著优势。
2026-02-04 18:00:00
853
原创 生态连通性敏感性分析:Linkage Mapper 进阶应用技巧
100次手动→1次自动)。 | | 交互式可视化 | 提供敏感性指数热力图、参数-结果响应曲线、三维交互曲面等可视化工具,支持决策解读。 | | 参数稳健性评估 | 计算参数的“稳健区间”(如阻力值±20%时IIC变化<5%),指导参数优化。 | | 跨平台兼容 | 支持Windows/Linux系统,兼容Linkage Mapper 2.0及以上版本。 | 总结 生态连通性敏感性分析通过量化参数不确定性对评估结果的影响,为保护决策提供“抗干扰”的科学依据。Linkage Mapper虽缺乏原生敏感性
2026-02-04 13:30:00
341
原创 RT-DETR 系列技术总结:R18/R50 的核心优势与应用场景
RT-DETR-R18/R50 凭借轻量实时与高精度R18通过动态通道调整与对抗训练,在边缘设备上实现“效率-精度”平衡(20 FPS@Jetson Nano,噪声场景 mAP 59.2%);R50借助可变形卷积与双向蒸馏,在云端复杂场景中突破小目标检测瓶颈(小目标 mAP 51.3%,推理速度 12 FPS@Jetson Nano)。核心价值:四大优化技术(双向蒸馏、可变形卷积、对抗训练、动态通道)为 RT-DETR 提供了“按需适配”能力,推动其在工业、自动驾驶、医疗等领域的规模化落地。部署建议。
2026-02-04 09:19:28
524
原创 YOLOv11改进 | Mamba-YOLOv11-T:基于SSM的高效全局建模,轻量级实时检测新标杆
本文提出Mamba-YOLOv11-T,通过集成状态空间模型(SSM)改进YOLOv11的全局建模能力。SSM以O(N)复杂度实现长程依赖捕捉,在保持轻量化的同时提升复杂场景检测精度。关键改进包括:1)设计SSM模块实现高效全局特征融合;2)替换骨干网络C3模块为集成SSM的MambaC3;3)支持动态场景适应。实验表明,该方法在自动驾驶、无人机巡检等场景下显著提升检测性能(mAP+6.8%),同时保持实时性(>40FPS),参数仅增加5%。代码实现展示了SSM模块与YOLOv11的集成方案,可根据不
2026-02-03 18:00:00
538
原创 多尺度生态连通性评估:Linkage Mapper 进阶参数调试
摘要: 多尺度生态连通性评估需匹配空间尺度(局域/区域/全球)与生态过程(物种扩散/种群动态)。Linkage Mapper工具虽支持基础分析,但默认参数(如30m分辨率、10km²源地阈值)难以适配不同物种需求。本文提出进阶参数调试框架:1) 按物种扩散距离划分空间尺度(如昆虫500m vs 哺乳动物10km);2) 优化源地阈值、阻力赋值等关键参数;3) 通过跨尺度一致性验证识别稳健廊道。案例显示该方法能有效评估大熊猫-小熊猫共存系统、城市绿地网络等复杂场景,为生态保护提供精准化解决方案。(149字)
2026-02-03 13:45:00
469
原创 实时目标检测技术趋势:RT-DETR 如何引领 DETR 家族轻量化发展
RT-DETR轻量化技术摘要(150字): RT-DETR通过三重创新突破DETR家族实时化瓶颈:1)骨干轻量化(ResNet-18/50+动态通道调整),参数量压缩60%;2)高效Transformer设计(AIFI单层注意力+CCFF跨尺度融合),推理速度提升3倍;3)动态优化策略(可变形下采样+双向蒸馏),在Jetson Nano实现15FPS。相比原始DETR,RT-DETR-R50在T4显卡达到42FPS,保持74.5%AP精度,首次实现边缘端实时检测,为AR导航、无人机巡检等场景提供高性价比解决
2026-02-03 09:33:29
548
原创 景观破碎化修复:Linkage Mapper 进阶廊道优化策略
本文提出基于Linkage Mapper工具的景观破碎化修复进阶策略,通过整合"破碎化诊断-修复优先级评估-多目标优化-动态效果模拟"技术链,解决传统廊道修复的单目标导向、静态设计和优先级模糊等问题。核心创新包括:采用边际连通性增益(MCG)量化修复优先级;构建多目标优化模型平衡连通性、成本与生态效益;引入阻力面衰减模型模拟修复措施的动态效果。该方法适用于森林-农田交错带、城市绿地网络、河流湿地等多种景观类型的破碎化修复,能显著提升修复效率和生态效益。
2026-02-02 18:00:00
222
原创 RT-DETR 与 YOLO 系列对比:两种实时检测技术路线的优劣势分析
RT-DETR与YOLO系列是当前实时目标检测的两大主流技术路线。YOLO系列基于CNN架构,通过单阶段端到端设计实现高速检测,适用于边缘设备和移动端应用;RT-DETR则采用Transformer+CNN混合架构,在精度-速度平衡方面表现更优,特别适合工业质检、自动驾驶等高精度场景。两者在架构设计、训练复杂度、后处理方式等方面存在显著差异:YOLO收敛快、依赖NMS(除v8),RT-DETR免NMS但训练需蒸馏。实际应用中可根据需求选择,或采用边缘YOLO初筛+云端RT-DETR复检的协同方案。代码实现显
2026-02-02 13:30:00
660
原创 基于规则引擎的Apollo决策知识库构建与仿真验证
本文基于Python规则引擎Pyke构建Apollo自动驾驶决策知识库,提出了一种可配置、可扩展的规则驱动方案。主要内容包括: 技术架构:采用Pyke规则引擎实现决策逻辑与代码解耦,支持热更新与可视化配置,适配Apollo平台Python技术栈。 核心实现: 定义车辆状态、障碍物、交通信号等数据模型 封装规则引擎服务,支持多规则库动态加载 实现交通信号控制、障碍物避让、车道保持等典型场景的规则推理 优势特点: 通过声明式规则提升系统可维护性 模块化知识库支持场景快速扩展 仿真验证表明决策准确率达98.2%
2026-02-02 09:12:59
544
原创 低版本 Spring Boot 升级指南:避坑与注意事项
升级 Spring Boot 低版本是一项艰巨但回报丰厚的任务。成功的秘诀在于周密的计划、小心的执行和对细节的关注。规划先行: 采用阶梯式升级路径,切勿贪图省事而跳跃。吃透文档: 认真研读每个目标版本的官方迁移指南和发布说明。重视测试: 一个强大的自动化测试套件是敢于升级的底气。警惕“大坑”: 特别注意2.4 的配置变更和3.0 的javax到jakarta迁移。循序渐进: 一次解决一类问题(编译、配置、依赖),并通过完整的测试验证每一步。
2026-02-01 17:33:56
593
原创 RT-DETR 系列模型压缩:基于知识蒸馏的 r18/r50 轻量化优化
"""多级特征蒸馏+注意力迁移损失函数"""self.T = temperature # 温度参数self.alpha = alpha # 特征蒸馏权重self.beta = beta # 注意力蒸馏权重self.gamma = gamma # 输出蒸馏权重# 特征对齐卷积(适配不同维度)])# 注意力投影层"""多级特征蒸馏损失"""# 对齐特征维度# L2特征对齐损失"""注意力蒸馏损失(KL散度)"""# 投影学生注意力至教师空间# KL散度计算。
2026-02-01 08:29:36
620
原创 Linkage Mapper 时空动态分析:长期生态连通性演变研究
本文提出了一种基于Linkage Mapper的生态连通性时空动态分析框架,旨在解决长期生态连通性演变研究中的关键技术瓶颈。该框架整合多期土地利用数据、时空统计方法与未来情景预测,实现了连通性指标的批量计算、时空演变模式识别、驱动因子解析和未来趋势预测。通过典型案例(如长三角城市化、青藏高原气候变化等)展示了该框架在量化连通性演变规律、识别关键驱动因子及评估保护策略效果方面的应用价值。研究为生态保护政策制定提供了系统化、定量化的技术支撑,弥补了传统静态连通性评估的不足。
2026-01-31 18:00:00
612
原创 YOLOv11改进:引入SSA序列打乱注意力模块与MSCSA二次创新模块,适配目标检测、图像分类与实例分割
YOLOv11改进:引入SSA与MSCSA模块提升CV任务性能 摘要: 本文提出在YOLOv11中集成SSA(序列打乱注意力)和MSCSA(多尺度上下文序列打乱注意力)模块,以解决计算机视觉任务中的关键挑战。SSA通过序列打乱和局部窗口注意力机制,在降低计算复杂度的同时增强长距离依赖建模能力;MSCSA进一步引入多尺度上下文融合和动态序列打乱策略,优化了多尺度目标检测和实例分割的边界特征处理。这些改进有效解决了传统注意力机制在全局上下文建模、局部细节保持和序列顺序敏感性方面的不足。实验表明,该方法在目标检测
2026-01-31 13:30:00
708
原创 轻量化实时检测模型对比:RT-DETR-r18 与 MobileViT-SSD 的差异
以“精度-速度平衡”为核心,通过动态通道调整(DCAM)与高效Transformer(AIFI+CCFF),在工业质检、边缘监控等复杂场景中实现高精度检测(mAP@0.5 58.3%),但参数量较大(28.5M),移动端部署受限。:以“速度-功耗优先”为核心,依托 MobileViT 轻量Transformer与 SSD 单阶段检测,在移动端、低功耗物联网中实现极致速度(65 FPS@T4,12.5ms 移动端延迟),但小目标精度较低(mAP@0.5 52.1%)。选型建议。
2026-01-31 09:12:06
1368
原创 Linkage Mapper 与电路理论结合:高阶连通性分析方法
本文提出了一种结合Linkage Mapper工具与电路理论的高阶生态连通性分析方法。该方法通过将生态网络类比为电路系统,利用电流密度和累积电流等指标量化物种扩散概率与廊道重要性,克服了传统最小成本路径分析的局限性。核心创新点包括:(1)多路径冗余评估,通过累积电流分散度识别替代廊道;(2)基于电流密度中心性的关键节点定位;(3)多尺度连通性分析能力。该方法可应用于保护区廊道规划、城市绿地网络优化等场景,为生态保护提供更精细化的决策支持。相比传统方法,该方案能更全面地反映物种扩散的复杂性和景观网络的抗干扰能
2026-01-30 18:00:00
368
广度优先遍历 实例
2016-08-02
深度优先遍历算法
2016-08-02
C语言停车场管理系统设计和实现
2024-01-11
2023年5月软考网络工程师考前冲刺密卷(案例分析).pdf
2023-09-01
python简明教程为唯一指定简体中文译本
2023-05-25
ChatGPT:AI模型框架研究
2023-05-25
CRT_64位工具
2018-12-06
老鼠走迷宫 算法 实例
2016-08-02
go学习资料.rar
2019-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅