- 博客(3504)
- 资源 (34)
- 问答 (14)
- 收藏
- 关注
原创 【全网独家】libVLC 视频缩放(代码+测试部署)
return 0;return 0;return 0;通过本文,我们了解了如何使用 libVLC 实现视频缩放功能,包括从初步的基本操作到高级的自定义缩放算法示例。
2024-08-07 13:30:00
1187
原创 【全网独家】OpenCV 高级图像处理技术:图像金字塔,图像修复(Inpainting),图像去噪
图像金字塔是一种多尺度表示方法,将图像在不同分辨率下进行表示。常见的图像金字塔类型包括高斯金字塔和拉普拉斯金字塔。本文详细介绍了 OpenCV 中的高级图像处理技术,包括图像金字塔、图像修复(Inpainting)和图像去噪。通过具体的代码示例展示了如何在不同应用场景中使用这些技术,并提供了一个简单的 Flask Web 应用来演示其部署与测试。这些技术为解决复杂的图像处理任务提供了有效的方法。
2024-08-05 04:00:00
1471
原创 鱼弦博客专栏以及公众号
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
2024-05-19 13:49:10
908
原创 基于 MATLAB 的蛇群算法优化双向长短时记忆网络 (SO-BiLSTM) 的时序时间序列数据预测
SO-BiLSTM 算法是一种基于蛇群算法 (Snake Algorithm) 优化双向长短时记忆网络 (BiLSTM) 的时序时间序列数据预测算法。该算法使用蛇群算法来优化 BiLSTM 模型的参数,以提高预测准确性。BiLSTM 是一种用于处理序列数据的递归神经网络 (RNN) 模型,具有较强的学习时间序列依赖关系的能力。然而,BiLSTM 模型的参数通常需要人工选择,这可能会影响模型的性能。蛇群算法是一种模拟自然界中蛇群行为的优化算法,具有较强的全局搜索能力和较快的收敛速度。
2024-05-15 02:15:00
236
原创 FFMPEG音频视频开发:QT获取Android、Linux、Windows系统上的摄像头数据帧与声卡音频通过FFMPEG编码为MP4存储(v1.0)
本文详细介绍了如何使用QT框架在Android、Linux和Windows系统上采集摄像头视频帧和麦克风音频数据,并通过FFmpeg库将其编码并存储为MP4文件。我们可以使用FFmpeg将采集到的视频帧和音频数据按照H.264视频编码和AAC音频编码进行编码,并将编码后的数据multiplexing到MP4容器文件中。总的来说,随着视频应用的不断发展,对音视频采集、编码和存储技术有着更高的要求,未来可以在编解码算法、性能优化、功能拓展等多个方面进行创新和改进,以满足不同场景的需求。
2024-05-13 11:30:00
700
原创 Keras 深度学习实战——神经网络基础与模型训练过程详解
本教程将介绍 Keras 深度学习框架中的神经网络基础知识以及模型训练过程的详细步骤。Keras 深度学习框架提供了简单易用的工具来构建和训练神经网络模型,这使得深度学习技术可以更加广泛地应用。
2024-05-11 16:38:55
777
原创 sora 来临,50 位 AI 电影制作人打造《终结者 2》,永远彻底改变电影业!
OpenAI Sora 是一款文本转视频模型,它可以生成逼真和富有想象力的场景。它基于 OpenAI 的 DALL-E 2 模型,并进行了改进以生成视频。Sora 使用了一种称为“扩散模型”的技术来生成视频。扩散模型首先从一个随机噪声图像开始,然后逐渐将其“扩散”成目标图像。在 Sora 中,目标图像是一系列视频帧。
2024-02-27 18:40:57
757
2
原创 基于 Linkage Mapper 的生态网络抗干扰性模拟与评估
基于 Linkage Mapper 的生态网络抗干扰性模拟与评估,通过整合干扰情景建模、连通性动态计算与抗干扰指标量化,突破了传统静态分析的局限,为生态网络的“干扰诊断-韧性提升”提供了系统性工具。方法创新:提出“干扰情景建模→连通性对比→指标评估→敏感性分析”的四步框架,实现抗干扰性的定量化;实践工具:提供可复用的 Python 代码,支持火灾、道路、入侵物种等多干扰类型的模拟;决策支持:通过关键廊道识别与冗余性分析,为保护策略提供“靶向目标”(如优先保护高 CLR 增幅的廊道)。
2026-01-29 10:04:04
449
原创 YOLOv11改进 | 引入EGA与LEG模块:低质量特征增强+局部特征提取,遥感与小目标检测高效涨点
本文针对YOLOv11在遥感和小目标检测中的局限性,提出引入EGA(低质量特征增强)和LEG(局部特征提取)模块的创新方案。EGA通过自适应增益网络和低秩去噪增强模糊、低对比度特征;LEG采用多尺度深度可分离卷积和动态位置注意力强化小目标细节捕捉。在遥感道路检测、无人机行人识别等场景中,该方法使mAP提升8-15%,召回率提升12-18%。核心代码实现了EGA的自适应特征增益与去噪功能,以及LEG的多尺度局部特征提取与动态注意力机制,可无缝集成到YOLOv11骨干网络中,显著提升对低质量图像和小目标的检测性
2026-01-28 18:00:00
1130
原创 RT-DETR 动态推理优化:根据场景自适应选择 r18/r50 模型
RT-DETR 动态推理优化:场景自适应模型选择 摘要 本文提出一种基于 RT-DETR 的动态推理优化框架(AIF),通过轻量级场景复杂度评估实现 R18/R50 模型的自适应选择。该方案在保持检测精度的同时显著提升边缘设备性能: 35%推理速度提升:在 T4 GPU 上实现 56 FPS 28%功耗降低:Jetson Nano 平均功耗降至 5.8W <0.8%精度损失:复杂场景下接近 R50 单模型性能 核心创新包括: 0.5M参数的 MobileNetV3 场景评估器 模型热切换与特征共享机制
2026-01-28 14:15:00
1293
原创 考虑道路拓扑约束的Apollo决策算法可行域生成方法仿真
"""车道类型枚举"""MAIN_ROAD = 0 # 主路车道RAMP = 1 # 匝道TEMPORARY = 2 # 临时车道(施工改道)BIKE_LANE = 3 # 非机动车道EMERGENCY = 4 # 应急车道"""连通类型枚举"""LONGITUDINAL = 0 # 纵向连通(同一车道前后路段)LATERAL = 1 # 横向连通(相邻车道变道)HIERARCHICAL = 2 # 层级连通(主路与匝道/辅路)"""转向权限枚举"""ALLOWED = 0 # 允许。
2026-01-28 09:30:51
616
原创 RT-DETR 在医疗影像中的应用:rtdetr-r50 的病灶检测实践
RT-DETR-R50凭借多尺度特征融合和端到端检测优势,在医疗影像病灶检测中展现出显著价值:肺部CT结节检测召回率达95%,推理速度74 FPS满足临床实时需求,且可无缝集成PACS系统。通过场景化代码实现(如DICOM处理、PACS通信)、性能优化(剪枝量化)和临床验证,本文为AI辅助医疗诊断提供了完整技术方案。未来,随着3D模型、多模态融合技术的发展,RT-DETR将进一步推动医疗影像诊断向智能化、精准化迈进。工程建议。
2026-01-27 18:00:00
367
原创 Linkage Mapper 进阶分析:多物种生态廊道协同构建
摘要: 多物种生态廊道协同构建通过整合不同物种的栖息地需求与扩散能力,优化保护资源利用。Linkage Mapper作为连通性分析工具,虽支持单物种分析,但需结合图论与多目标优化技术(如NSGA-II)实现多物种协同。核心挑战包括栖息地需求冲突、扩散能力差异及廊道优先级矛盾。解决方案包括共享源地识别、差异化阻力面构建及协同廊道生成,适用于森林-湿地复合系统、城市绿地网络等场景。通过加权融合阻力面与多目标优化,平衡各物种连通性,实现高效生态保护。
2026-01-27 13:45:00
1259
原创 YOLOv改进 | PConv新型风车形卷积和SPConv二次创新改进(移动风车卷积,使它充分活跃起来),增强特征提取
本文提出了一种改进YOLOv11目标检测模型的方法,通过引入PConv新型风车形卷积和SPConv二次创新改进卷积,显著提升了特征提取能力。PConv采用独特的"风车形"卷积核排列(4个叶片状子卷积核),实现了多方向特征捕捉和动态感受野调整。SPConv在此基础上增加二次卷积交互和动态权重调整机制,进一步增强了特征表达能力。该方法在保持模型轻量化的同时,显著提升了小目标检测精度(AP),适用于移动端实时检测、嵌入式设备部署和工业视频流分析等场景。实验证明,改进后的模型在移动设备上可达到2
2026-01-27 09:30:10
465
原创 Linkage Mapper 定制化工具开发——基于 Linkage Mapper 源码扩展新功能(适合程序员)
基于 Linkage Mapper 源码的定制化开发,是突破官方功能限制、实现“按需定制”的核心手段。本文通过“动态阻力廊道生成”案例,详解了从需求分析、源码修改到测试部署的全流程,展示了如何通过参数扩展、模块重写与主流程调整实现个性化功能。可行性:Linkage Mapper 的模块化源码结构与清晰的配置管理机制,降低了定制化开发的门槛;灵活性:支持从简单参数扩展到复杂逻辑重写,可适配科研、工程、教学等多元场景;价值。
2026-01-26 18:00:00
916
原创 MATLAB 使用 AlexNet 网络进行步态识别与仿真分析
MATLAB 使用 AlexNet 网络进行步态识别与仿真分析 摘要:本文介绍了使用 MATLAB 深度学习工具箱实现 AlexNet 网络进行步态识别的方法。AlexNet 是一种经典的深度卷积神经网络,包含 5 个卷积层和 3 个全连接层,采用 ReLU 激活函数和 Dropout 技术。文章详细说明了两种应用场景:1) 直接使用预训练模型进行特征提取和分类;2) 通过迁移学习微调网络以适应特定任务。提供了完整的 MATLAB 代码实现,包括数据加载、网络构建、训练和评估过程。实验表明,该方法在步态识别
2026-01-26 14:00:00
727
原创 YOLOv11改进 | Mamba-YOLOv11-B:基于SSM的高效全局建模,平衡性能与效率
摘要: 本文提出Mamba-YOLOv11-B,通过集成状态空间模型(SSM)改进YOLOv11的全局建模能力。SSM以$O(N)$复杂度实现长程依赖捕捉,在轻量级(参数+5%)和实时性(>40 FPS)下提升多任务性能(检测mAP+6.2%,分割mIoU+5.8%)。关键技术包括:1) SSM共享模块实现多任务特征复用;2) 动态状态转移适应场景变化。实验证明其在自动驾驶(检测+分割)、边缘设备、安防监控和医学影像等场景中均显著优于基线模型,平衡了性能与效率。代码提供SSM多任务共享模块和集成头的P
2026-01-26 09:45:06
794
原创 RT-DETR 与 Transformer 检测模型对比:性能与效率的平衡之道
RT-DETR通过轻量化骨干(ResNet-18/50)、高效Transformer(AIFI+CCFF)、动态策略(DCAM+蒸馏)效率优势:42 FPS@T4(r50)、20 FPS@Jetson Nano(r18),远超原始DETR(10 FPS)和Swin-T(18 FPS);性能优势:小目标mAP@0.5达51.3%(r50),比Deformable DETR高15.1个百分点;部署优势:支持TensorRT/ONNX/TFLite量化,从服务器到边缘设备均可高效运行。选型建议。
2026-01-25 22:15:16
401
原创 Apollo决策层对交通参与者意图预测的不确定性建模与仿真
"""交通参与者意图类别"""STRAIGHT = 0 # 直行LEFT_TURN = 1 # 左转RIGHT_TURN = 2 # 右转STOP = 3 # 停车YIELD = 4 # 让行CROSS = 5 # 横穿(行人/非机动车)@dataclass"""轨迹点(时间戳, x, y, vx, vy, ax, ay)"""x: floaty: floatvx: floatvy: floatax: floatay: float@dataclass。
2026-01-25 08:53:22
539
原创 从 DETR 到 RT-DETR:实时目标检测技术的演进与突破
DETR开创端到端 Transformer 检测范式,却因计算冗余难以实时;RT-DETR通过轻量化骨干高效 Transformer动态策略(DCAM/DDM/蒸馏),实现“精度-速度-轻量”平衡,推动 DETR 在工业界规模化落地。核心价值:RT-DETR 证明 Transformer 架构可通过轻量化改造适配边缘与云端,为实时目标检测开辟了“高效+高精度”的新路径。部署建议边缘场景选 RT-DETR-R18(动态通道版),简单场景降计算、复杂场景保精度;
2026-01-24 13:53:21
401
原创 ChatGPT vs. 文心一言 vs. 通义千问:中文创作终极搭档深度评测
在数字内容爆炸式增长的时代,中文创作已从少数专业人士的专属领域,演变为全民参与的信息生产活动。无论是市场文案、技术博客、社交媒体内容,还是创意小说、商业报告,高质量、高效率的文本创作已成为数字经济时代的关键生产力。传统创作过程面临着创意枯竭、效率瓶颈、风格单一等痛点,而生成式AI的崛起,正为这一古老行当带来革命性变化。当前,三大主流AI创作工具——OpenAI的ChatGPT、百度的文心一言(ERNIE Bot)和阿里的通义千问(Qwen),均宣称在中文创作领域具备卓越能力。它们在技术路线、文化理解、创作风
2026-01-24 11:46:08
1004
原创 Linkage Mapper 结果导出为通用格式——栅格转 GeoJSON、矢量转 KML(跨平台共享)
摘要: 本文介绍如何将Linkage Mapper生态分析工具输出的专业GIS格式(如Shapefile、GeoTIFF)转换为通用格式(GeoJSON、KML),以解决跨平台共享难题。GeoJSON适合Web地图集成(轻量、JSON结构),KML支持Google Earth 3D可视化。转换核心包括:矢量转KML需调整坐标顺序并保留属性,栅格转GeoJSON需通过矢量化处理。关键原则包括统一WGS84坐标系、UTF-8编码、数据轻量化及元数据保留。应用场景涵盖科研数据共享、决策汇报和公众参与平台,通过自动
2026-01-23 18:00:00
1219
原创 YOLOv改进 | YOLOv11更换主干Backbone之MobileNetV2(轻量化主干网络结构--高效轻量移动模型)
本文提出将YOLOv11的主干网络替换为轻量化的MobileNetV2,以提升模型在移动端设备的部署效率。MobileNetV2通过倒残差结构和线性瓶颈层,显著减少了计算量和参数量(降至1M~3M),同时保持多尺度特征提取能力。实验表明,改进后的模型在移动设备上可实现20-30 FPS的实时检测,适用于手机APP、无人机和工业监控等场景。核心代码展示了倒残差块的实现,通过深度可分离卷积和通道扩展/压缩实现高效特征提取。
2026-01-23 13:30:00
1191
原创 基于强化学习的Apollo决策算法探索-利用平衡策略仿真
"""Apollo决策状态空间定义(以无保护左转为例)"""# 状态维度:[v_e, d_o, v_o, h, s](自车速度、对向车距、对向车速、车头时距、信号灯状态)self.low = np.array([0.0, 5.0, 0.0, 0.5, 0.0]) # 最小值self.high = np.array([30.0, 100.0, 50.0, 5.0, 1.0]) # 最大值(信号灯:0=无,1=红,2=绿)"""Apollo决策动作空间定义(无保护左转)"""
2026-01-23 12:13:51
826
原创 RT-DETR-R18 ONNX Runtime 部署:跨平台推理的高效实现方式
随着人工智能应用的普及,模型部署的跨平台需求日益增长。RT-DETR-R18作为轻量级实时目标检测模型,结合ONNX Runtime的跨平台能力,为开发者提供了高效、灵活的部署方案。本文将详细介绍RT-DETR-R18模型转换为ONNX格式并在不同平台上通过ONNX Runtime部署的完整流程,涵盖从模型转换到实际应用的各个环节。场景2:C++桌面应用部署(带OpenCV可视化)场景3:Android移动端部署(Java/Kotlin)原理解释与核心特性ONNX Runtime 工作原理模
2026-01-23 09:14:02
775
原创 RT-DETR-R18 模型剪枝部署:进一步降低边缘设备计算成本
RT-DETR-R18模型剪枝部署摘要:本文介绍了针对边缘设备的RT-DETR-R18轻量级目标检测模型剪枝方法。通过结构化剪枝(通道剪枝)和非结构化剪枝技术,可显著降低模型计算量和存储需求(原始模型45.2MB)。文章详细阐述了剪枝策略(L1/L2范数剪枝和随机剪枝)、代码实现及微调方法,适用于移动端AR、无人机视觉、工业质检等多种边缘计算场景。剪枝后的模型在保持较高精度的同时,能降低设备能耗并提高推理速度,适合资源受限的嵌入式系统部署。
2026-01-22 18:00:00
1024
原创 Linkage Mapper 自动化脚本开发 2:参数自动调整(如根据源地密度动态设置最大长度)
摘要:本文提出了一种基于源地密度动态调整Linkage Mapper廊道分析参数的方法。通过核密度估计量化源地空间分布特征,采用幂函数公式自动计算最大廊道长度(L_max=L_base×(D_ref/D_actual)^α),实现景观异质性适配。该方法可应用于保护区网络优化、破碎化生境连接等场景,相比固定参数能减少30%冗余廊道。技术流程包括源地KDE计算、动态参数推导和自动化工具集成,支持最小/最大长度阈值约束,为生态廊道规划提供智能化解决方案。
2026-01-22 13:45:00
1672
原创 Apollo规划决策中代价函数权重自适应调整机制仿真研究
摘要: 本文针对Apollo自动驾驶规划模块中固定权重代价函数适应性不足的问题,提出一种基于场景特征感知的权重自适应调整机制。通过实时提取动态障碍物、交通流及规则特征,评估场景风险等级,动态调整安全、舒适、效率等目标的权重系数。该机制采用"特征工程+MPC+规则兜底"的混合方法,在无保护左转、拥堵跟驰等复杂场景中实现多目标动态权衡。仿真验证表明,该方案在100ms规划周期内完成调整,较固定权重策略提升轨迹安全性15%、舒适性20%,为自动驾驶规划决策提供智能化升级路径。
2026-01-22 12:02:38
401
原创 YOLOv改进 | YOLOv11更换主干Backbone之MobileNetV1(轻量化主干网络结构)
本文提出将YOLOv11的主干网络替换为轻量化的MobileNetV1,以解决传统CSPDarknet网络在移动端部署时存在的计算复杂度高、参数量大等问题。MobileNetV1通过深度可分离卷积技术,将标准卷积分解为深度卷积和逐点卷积,显著降低了模型计算量和参数量。改进后的YOLOv11在保持多尺度检测能力的同时,模型体积缩小至1/5-1/8,推理速度提升3-5倍,特别适合移动端APP、嵌入式设备和实时视频分析等资源受限场景。文章详细阐述了技术原理,并提供了MobileNetV1主干网络的PyTorch实
2026-01-22 09:28:14
453
原创 RT-DETR 在智能零售中的应用:rtdetr-r50 的商品识别与计数
摘要 RT-DETR-R50作为新一代实时端到端目标检测模型,在智能零售领域展现出显著优势。该模型通过53.0% AP的高精度和74 FPS的实时性能,有效解决了商品识别中的密集堆叠、小目标检测等核心挑战。本文提出的零售商品计数系统实现了完整的视觉解决方案,包括图像预处理、RT-DETR推理、后处理和结果可视化等关键环节。系统可应用于智能货架监控、自助结算台等多个场景,相比传统RFID方案显著降低部署成本。代码实现展示了单品识别与计数的完整流程,包括ONNX Runtime推理、坐标转换和商品分类统计等功能
2026-01-21 18:00:00
1216
原创 Linkage Mapper 多物种适应性分析——不同物种(鸟类/哺乳类)的阻力面差异化构建
本文探讨了生态连通性保护中多物种阻力面差异化构建的方法。研究指出,传统"一刀切"阻力面无法满足不同物种需求,如鸟类依赖开阔湿地而哺乳类需要连续森林。文章提出物种特异性阻力面模型(R_species = Σw_i×F_i),通过权重分配量化各物种对景观的差异化感知。以丹顶鹤、东北虎和青蛙为例,详细解析了不同物种的阻力因子选择与权重分配逻辑,如鸟类关注建筑高度(权重0.3)和湿地面积(0.5),而哺乳类侧重森林覆盖率(0.4)和道路密度(0.3)。该方法可应用于国家公园规划、城市绿地设计等场
2026-01-21 14:00:00
592
原创 YOLOv改进 | YOLOv11改进DySample一种轻量的动态上采样算子
本文提出在YOLOv11中引入轻量级动态上采样算子DySample,以解决传统静态上采样方法在细节保留和多尺度特征融合中的不足。DySample通过动态预测局部采样核,根据特征内容自适应调整采样策略,显著提升了小目标检测和边缘密集场景的性能。实验表明,该方法在COCO小目标检测和VisDrone数据集上实现1.5%-3%的mAP提升,计算开销仅增加2%-4%。文章详细分析了DySample的技术原理,包括动态核生成和内容感知采样机制,并提供了PyTorch实现代码,展示其在无人机航拍、医学影像等场景的应用价
2026-01-21 09:56:53
427
原创 RT-DETR-R18 TensorFlow Lite 部署:移动端低功耗检测方案
本文介绍了RT-DETR-R18轻量化目标检测模型在TensorFlow Lite上的移动端部署方案。该模型具有11.9M参数和28.5 GFLOPs计算量,在T4 GPU上可达108 FPS。文章详细展示了模型转换与量化过程,包括FP32、FP16和INT8三种量化方式,并提供了基准测试比较。同时给出了Android应用实现代码框架,涵盖模型加载、图像预处理、推理执行和后处理等关键环节。该方案针对移动端资源受限环境优化,通过TensorFlow Lite的量化、硬件加速等技术实现低功耗实时检测,适用于移动
2026-01-20 18:00:00
1140
原创 面向复杂路口的Apollo决策算法语义理解模块设计与仿真
"""语义要素基类"""self.element_id = element_id # 要素唯一IDself.element_type = element_type # 要素类型(如"pedestrian", "vehicle")self.position = position # 全局坐标 (x, y, z)self.attributes: Dict[str, Any] = {} # 动态属性字典"""增强属性(子类实现)"""pass@dataclass"""行人要素"""
2026-01-20 15:53:51
711
原创 Linkage Mapper 动态阻力面应用——季节性因子(如冬季积雪阻力升高)的时序分析
摘要:生态连通性分析中,景观阻力具有动态变化特征,传统静态阻力面难以反映季节性因素(如积雪、水位、植被)的影响。动态阻力面通过时序因子修正基础阻力,构建季节性阻力序列(冬季/夏季等),更准确模拟物种扩散过程。其核心流程包括:基础阻力面生成、季节性因子数据处理、阻力修正计算、时序阻力面合成及连通性模拟。该方法可识别季节性断裂点,优化保护策略(如临时通道),适用于东北虎栖息地、洄游鱼类通道等场景,推动生态保护从静态规划转向动态适应。(150字)
2026-01-20 13:45:00
1047
原创 YOLOv改进 | SIoU、WIoU、GIoU、DIoU、EIoU、CIoU,InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数
本文综述了YOLO系列目标检测算法中改进的IoU损失函数,包括SIoU、WIoU、GIoU等传统变体以及InnerIoU、FocusIoU等创新方法。针对传统IoU的梯度消失、方向敏感性不足等问题,这些改进通过引入中心点距离、宽高比惩罚、内部重叠区域聚焦等机制,显著提升了检测精度。文章详细分析了不同损失函数的技术原理,并提供了DIoU和WIoU的PyTorch实现代码,适用于小目标检测、密集场景和遮挡情况等应用场景。这些改进方法为YOLO系列算法在不同检测任务中的性能优化提供了有效解决方案。
2026-01-20 09:33:59
791
原创 Linkage Mapper 电流密度图解读——高电流区域=高连通性廊道(辅助廊道优化)
电流密度图是Linkage Mapper与Circuitscape集成分析的核心成果,通过电路理论模拟物种扩散路径,将高电流区域识别为高连通性生态廊道。该技术突破了传统最小成本路径法的局限,实现多路径识别和连通效能量化。电流密度值(0-1范围)直接反映廊道效能,0.6以上为核心廊道,0.3-0.6为次级廊道。应用场景包括森林、河流、城市绿地等廊道优化,通过识别高电流区域指导修复措施,并支持气候变化适应性规划。分析流程包含电流密度图生成、预处理、廊道提取、优化方案制定和效果验证五个阶段,需配合ArcGIS等工
2026-01-19 18:00:00
425
原创 MATLAB 基于图像去噪算法的仿真:中值滤波、高斯滤波以及频域滤波等
本文介绍了基于MATLAB的图像去噪算法实现,重点分析了中值滤波、高斯滤波和频域滤波三种方法的原理、优缺点及MATLAB实现代码。中值滤波适合处理椒盐噪声并能保留边缘信息,高斯滤波对高斯噪声效果显著,频域滤波则可去除特定频率噪声。文章还探讨了这些算法在图像增强、目标识别和医学图像分析等领域的应用场景,并提供了完整的MATLAB仿真代码示例。最后展望了深度学习在图像去噪领域的应用前景。
2026-01-19 13:45:00
1153
原创 Unity (U3D) 渲染管线与阶段详解
Unity渲染管线是将3D场景转换为2D图像的复杂过程,主要分为三个阶段:应用阶段(CPU准备数据并提交绘制指令)、几何阶段(GPU处理顶点变换)和光栅化阶段(GPU生成像素并着色)。后处理阶段可对最终图像进行特效处理。该管线通过分工协作实现高效渲染,开发者可通过Unity接口控制各阶段,实现各种视觉效果。建议使用URP渲染管线以获得更优性能。
2026-01-19 12:04:46
941
原创 YOLOv改进 | YOLOv11引入CARAFE上采样模块,改善采样细节保留和重建质量
在计算机视觉目标检测领域,YOLO系列算法凭借其高效的检测速度与精度平衡,成为工业界与学术界的主流选择。YOLOv11作为最新一代单阶段检测器,在骨干网络(如CSPDarknet)与特征金字塔(P3 - P5层)的优化下,已具备较强的多尺度目标检测能力。然而,在处理与时,传统上采样方法(如双线性插值、最近邻插值)因缺乏语义信息引导,常导致采样后的特征图模糊、细节丢失,进而影响小目标的定位精度与分类准确性。为突破这一瓶颈,本文提出一种创新性改进方案——在YOLOv11中引入。CARAFE通过。
2026-01-19 09:32:46
587
广度优先遍历 实例
2016-08-02
深度优先遍历算法
2016-08-02
C语言停车场管理系统设计和实现
2024-01-11
2023年5月软考网络工程师考前冲刺密卷(案例分析).pdf
2023-09-01
python简明教程为唯一指定简体中文译本
2023-05-25
ChatGPT:AI模型框架研究
2023-05-25
CRT_64位工具
2018-12-06
老鼠走迷宫 算法 实例
2016-08-02
go学习资料.rar
2019-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅