- 博客(3520)
- 资源 (34)
- 问答 (14)
- 收藏
- 关注
原创 【全网独家】libVLC 视频缩放(代码+测试部署)
return 0;return 0;return 0;通过本文,我们了解了如何使用 libVLC 实现视频缩放功能,包括从初步的基本操作到高级的自定义缩放算法示例。
2024-08-07 13:30:00
1193
原创 【全网独家】OpenCV 高级图像处理技术:图像金字塔,图像修复(Inpainting),图像去噪
图像金字塔是一种多尺度表示方法,将图像在不同分辨率下进行表示。常见的图像金字塔类型包括高斯金字塔和拉普拉斯金字塔。本文详细介绍了 OpenCV 中的高级图像处理技术,包括图像金字塔、图像修复(Inpainting)和图像去噪。通过具体的代码示例展示了如何在不同应用场景中使用这些技术,并提供了一个简单的 Flask Web 应用来演示其部署与测试。这些技术为解决复杂的图像处理任务提供了有效的方法。
2024-08-05 04:00:00
1475
原创 鱼弦博客专栏以及公众号
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
2024-05-19 13:49:10
910
原创 基于 MATLAB 的蛇群算法优化双向长短时记忆网络 (SO-BiLSTM) 的时序时间序列数据预测
SO-BiLSTM 算法是一种基于蛇群算法 (Snake Algorithm) 优化双向长短时记忆网络 (BiLSTM) 的时序时间序列数据预测算法。该算法使用蛇群算法来优化 BiLSTM 模型的参数,以提高预测准确性。BiLSTM 是一种用于处理序列数据的递归神经网络 (RNN) 模型,具有较强的学习时间序列依赖关系的能力。然而,BiLSTM 模型的参数通常需要人工选择,这可能会影响模型的性能。蛇群算法是一种模拟自然界中蛇群行为的优化算法,具有较强的全局搜索能力和较快的收敛速度。
2024-05-15 02:15:00
237
原创 FFMPEG音频视频开发:QT获取Android、Linux、Windows系统上的摄像头数据帧与声卡音频通过FFMPEG编码为MP4存储(v1.0)
本文详细介绍了如何使用QT框架在Android、Linux和Windows系统上采集摄像头视频帧和麦克风音频数据,并通过FFmpeg库将其编码并存储为MP4文件。我们可以使用FFmpeg将采集到的视频帧和音频数据按照H.264视频编码和AAC音频编码进行编码,并将编码后的数据multiplexing到MP4容器文件中。总的来说,随着视频应用的不断发展,对音视频采集、编码和存储技术有着更高的要求,未来可以在编解码算法、性能优化、功能拓展等多个方面进行创新和改进,以满足不同场景的需求。
2024-05-13 11:30:00
702
原创 Keras 深度学习实战——神经网络基础与模型训练过程详解
本教程将介绍 Keras 深度学习框架中的神经网络基础知识以及模型训练过程的详细步骤。Keras 深度学习框架提供了简单易用的工具来构建和训练神经网络模型,这使得深度学习技术可以更加广泛地应用。
2024-05-11 16:38:55
780
原创 sora 来临,50 位 AI 电影制作人打造《终结者 2》,永远彻底改变电影业!
OpenAI Sora 是一款文本转视频模型,它可以生成逼真和富有想象力的场景。它基于 OpenAI 的 DALL-E 2 模型,并进行了改进以生成视频。Sora 使用了一种称为“扩散模型”的技术来生成视频。扩散模型首先从一个随机噪声图像开始,然后逐渐将其“扩散”成目标图像。在 Sora 中,目标图像是一系列视频帧。
2024-02-27 18:40:57
759
2
原创 YOLOv11改进 | Mamba-YOLOv11-T:基于SSM的高效全局建模,轻量级实时检测新标杆
本文提出Mamba-YOLOv11-T,通过集成状态空间模型(SSM)改进YOLOv11的全局建模能力。SSM以O(N)复杂度实现长程依赖捕捉,在保持轻量化的同时提升复杂场景检测精度。关键改进包括:1)设计SSM模块实现高效全局特征融合;2)替换骨干网络C3模块为集成SSM的MambaC3;3)支持动态场景适应。实验表明,该方法在自动驾驶、无人机巡检等场景下显著提升检测性能(mAP+6.8%),同时保持实时性(>40FPS),参数仅增加5%。代码实现展示了SSM模块与YOLOv11的集成方案,可根据不
2026-02-03 18:00:00
505
原创 多尺度生态连通性评估:Linkage Mapper 进阶参数调试
摘要: 多尺度生态连通性评估需匹配空间尺度(局域/区域/全球)与生态过程(物种扩散/种群动态)。Linkage Mapper工具虽支持基础分析,但默认参数(如30m分辨率、10km²源地阈值)难以适配不同物种需求。本文提出进阶参数调试框架:1) 按物种扩散距离划分空间尺度(如昆虫500m vs 哺乳动物10km);2) 优化源地阈值、阻力赋值等关键参数;3) 通过跨尺度一致性验证识别稳健廊道。案例显示该方法能有效评估大熊猫-小熊猫共存系统、城市绿地网络等复杂场景,为生态保护提供精准化解决方案。(149字)
2026-02-03 13:45:00
443
原创 实时目标检测技术趋势:RT-DETR 如何引领 DETR 家族轻量化发展
RT-DETR轻量化技术摘要(150字): RT-DETR通过三重创新突破DETR家族实时化瓶颈:1)骨干轻量化(ResNet-18/50+动态通道调整),参数量压缩60%;2)高效Transformer设计(AIFI单层注意力+CCFF跨尺度融合),推理速度提升3倍;3)动态优化策略(可变形下采样+双向蒸馏),在Jetson Nano实现15FPS。相比原始DETR,RT-DETR-R50在T4显卡达到42FPS,保持74.5%AP精度,首次实现边缘端实时检测,为AR导航、无人机巡检等场景提供高性价比解决
2026-02-03 09:33:29
509
原创 景观破碎化修复:Linkage Mapper 进阶廊道优化策略
本文提出基于Linkage Mapper工具的景观破碎化修复进阶策略,通过整合"破碎化诊断-修复优先级评估-多目标优化-动态效果模拟"技术链,解决传统廊道修复的单目标导向、静态设计和优先级模糊等问题。核心创新包括:采用边际连通性增益(MCG)量化修复优先级;构建多目标优化模型平衡连通性、成本与生态效益;引入阻力面衰减模型模拟修复措施的动态效果。该方法适用于森林-农田交错带、城市绿地网络、河流湿地等多种景观类型的破碎化修复,能显著提升修复效率和生态效益。
2026-02-02 18:00:00
201
原创 RT-DETR 与 YOLO 系列对比:两种实时检测技术路线的优劣势分析
RT-DETR与YOLO系列是当前实时目标检测的两大主流技术路线。YOLO系列基于CNN架构,通过单阶段端到端设计实现高速检测,适用于边缘设备和移动端应用;RT-DETR则采用Transformer+CNN混合架构,在精度-速度平衡方面表现更优,特别适合工业质检、自动驾驶等高精度场景。两者在架构设计、训练复杂度、后处理方式等方面存在显著差异:YOLO收敛快、依赖NMS(除v8),RT-DETR免NMS但训练需蒸馏。实际应用中可根据需求选择,或采用边缘YOLO初筛+云端RT-DETR复检的协同方案。代码实现显
2026-02-02 13:30:00
482
原创 基于规则引擎的Apollo决策知识库构建与仿真验证
本文基于Python规则引擎Pyke构建Apollo自动驾驶决策知识库,提出了一种可配置、可扩展的规则驱动方案。主要内容包括: 技术架构:采用Pyke规则引擎实现决策逻辑与代码解耦,支持热更新与可视化配置,适配Apollo平台Python技术栈。 核心实现: 定义车辆状态、障碍物、交通信号等数据模型 封装规则引擎服务,支持多规则库动态加载 实现交通信号控制、障碍物避让、车道保持等典型场景的规则推理 优势特点: 通过声明式规则提升系统可维护性 模块化知识库支持场景快速扩展 仿真验证表明决策准确率达98.2%
2026-02-02 09:12:59
521
原创 低版本 Spring Boot 升级指南:避坑与注意事项
升级 Spring Boot 低版本是一项艰巨但回报丰厚的任务。成功的秘诀在于周密的计划、小心的执行和对细节的关注。规划先行: 采用阶梯式升级路径,切勿贪图省事而跳跃。吃透文档: 认真研读每个目标版本的官方迁移指南和发布说明。重视测试: 一个强大的自动化测试套件是敢于升级的底气。警惕“大坑”: 特别注意2.4 的配置变更和3.0 的javax到jakarta迁移。循序渐进: 一次解决一类问题(编译、配置、依赖),并通过完整的测试验证每一步。
2026-02-01 17:33:56
535
原创 RT-DETR 系列模型压缩:基于知识蒸馏的 r18/r50 轻量化优化
"""多级特征蒸馏+注意力迁移损失函数"""self.T = temperature # 温度参数self.alpha = alpha # 特征蒸馏权重self.beta = beta # 注意力蒸馏权重self.gamma = gamma # 输出蒸馏权重# 特征对齐卷积(适配不同维度)])# 注意力投影层"""多级特征蒸馏损失"""# 对齐特征维度# L2特征对齐损失"""注意力蒸馏损失(KL散度)"""# 投影学生注意力至教师空间# KL散度计算。
2026-02-01 08:29:36
592
原创 Linkage Mapper 时空动态分析:长期生态连通性演变研究
本文提出了一种基于Linkage Mapper的生态连通性时空动态分析框架,旨在解决长期生态连通性演变研究中的关键技术瓶颈。该框架整合多期土地利用数据、时空统计方法与未来情景预测,实现了连通性指标的批量计算、时空演变模式识别、驱动因子解析和未来趋势预测。通过典型案例(如长三角城市化、青藏高原气候变化等)展示了该框架在量化连通性演变规律、识别关键驱动因子及评估保护策略效果方面的应用价值。研究为生态保护政策制定提供了系统化、定量化的技术支撑,弥补了传统静态连通性评估的不足。
2026-01-31 18:00:00
602
原创 YOLOv11改进:引入SSA序列打乱注意力模块与MSCSA二次创新模块,适配目标检测、图像分类与实例分割
YOLOv11改进:引入SSA与MSCSA模块提升CV任务性能 摘要: 本文提出在YOLOv11中集成SSA(序列打乱注意力)和MSCSA(多尺度上下文序列打乱注意力)模块,以解决计算机视觉任务中的关键挑战。SSA通过序列打乱和局部窗口注意力机制,在降低计算复杂度的同时增强长距离依赖建模能力;MSCSA进一步引入多尺度上下文融合和动态序列打乱策略,优化了多尺度目标检测和实例分割的边界特征处理。这些改进有效解决了传统注意力机制在全局上下文建模、局部细节保持和序列顺序敏感性方面的不足。实验表明,该方法在目标检测
2026-01-31 13:30:00
694
原创 轻量化实时检测模型对比:RT-DETR-r18 与 MobileViT-SSD 的差异
以“精度-速度平衡”为核心,通过动态通道调整(DCAM)与高效Transformer(AIFI+CCFF),在工业质检、边缘监控等复杂场景中实现高精度检测(mAP@0.5 58.3%),但参数量较大(28.5M),移动端部署受限。:以“速度-功耗优先”为核心,依托 MobileViT 轻量Transformer与 SSD 单阶段检测,在移动端、低功耗物联网中实现极致速度(65 FPS@T4,12.5ms 移动端延迟),但小目标精度较低(mAP@0.5 52.1%)。选型建议。
2026-01-31 09:12:06
1354
原创 Linkage Mapper 与电路理论结合:高阶连通性分析方法
本文提出了一种结合Linkage Mapper工具与电路理论的高阶生态连通性分析方法。该方法通过将生态网络类比为电路系统,利用电流密度和累积电流等指标量化物种扩散概率与廊道重要性,克服了传统最小成本路径分析的局限性。核心创新点包括:(1)多路径冗余评估,通过累积电流分散度识别替代廊道;(2)基于电流密度中心性的关键节点定位;(3)多尺度连通性分析能力。该方法可应用于保护区廊道规划、城市绿地网络优化等场景,为生态保护提供更精细化的决策支持。相比传统方法,该方案能更全面地反映物种扩散的复杂性和景观网络的抗干扰能
2026-01-30 18:00:00
353
原创 RT-DETR 系列模型的技术价值:对计算机视觉落地的推动作用
RT-DETR系列模型通过创新的CNN-Transformer融合架构和动态轻量化策略,有效解决了计算机视觉落地中的"精度-速度-成本"三角困境。其核心技术突破包括:轻量化骨干网络结合可变形卷积(DDM)保留小目标特征、高效Transformer结构(AIFI+CCFF)降低计算复杂度、动态通道调整(DCAM)实现场景自适应计算。在工业质检、边缘监控、自动驾驶和医疗影像等典型场景中,RT-DETR展现出显著优势:工业微缺陷检测精度达51.3% mAP@0.5,边缘设备动态场景切换延迟&l
2026-01-30 14:00:00
499
原创 Apollo规划决策中“让行-超车”行为的优先级决策逻辑仿真
本文构建了Apollo自动驾驶系统中"让行-超车"行为的优先级决策逻辑仿真框架。通过分层决策结构,综合评估速度差、车距、邻道环境等因素,采用代价函数动态选择最优行为。仿真覆盖5种典型场景,包括高速、城市道路及弯道等复杂情况。决策流程包含感知输入、指标计算、邻道预测、收益评估等步骤,最终输出安全高效的驾驶行为。系统支持扩展天气、法规等特殊因素,为自动驾驶决策算法提供理论验证和工程参考。
2026-01-30 09:46:53
507
原创 RT-DETR-R18 模型转换指南:PyTorch 到 ONNX 的无缝衔接
摘要 本文详细介绍了将RT-DETR-R18目标检测模型从PyTorch转换为ONNX格式的完整流程。RT-DETR-R18作为轻量级实时检测模型,在T4 GPU上可达112 FPS,适用于嵌入式设备和云端部署。文章分析了转换过程中的关键挑战,包括算子兼容性、动态Shape适配和后处理集成等问题。提供了静态Shape转换的具体实现代码,涵盖模型加载、后处理包装和ONNX导出等步骤。该转换方案可应用于嵌入式设备加速、云端推理服务和跨框架迁移等多种场景,为工业部署提供标准化解决方案。
2026-01-29 18:00:00
786
原创 YOLOv11改进:引入EDFFN高效鉴别频域模块,适配多任务场景
摘要: YOLOv11引入EDFFN(高效鉴别频域模块),通过频域变换和关键频率选择性融合,解决目标检测、图像分类和实例分割中的高频/低频特征协同问题。该模块采用轻量化设计,在频域中动态增强关键特征(如小目标的边缘纹理和大目标的语义信息),抑制冗余噪声。实验表明,EDFFN能显著提升多任务性能,尤其在自动驾驶(小目标检测)、医学影像(病灶分类)和遥感分割(边界清晰度)等场景效果突出。代码实现基于PyTorch,可灵活集成至YOLOv11的Neck/Head部分。
2026-01-29 14:15:00
548
原创 基于 Linkage Mapper 的生态网络抗干扰性模拟与评估
基于 Linkage Mapper 的生态网络抗干扰性模拟与评估,通过整合干扰情景建模、连通性动态计算与抗干扰指标量化,突破了传统静态分析的局限,为生态网络的“干扰诊断-韧性提升”提供了系统性工具。方法创新:提出“干扰情景建模→连通性对比→指标评估→敏感性分析”的四步框架,实现抗干扰性的定量化;实践工具:提供可复用的 Python 代码,支持火灾、道路、入侵物种等多干扰类型的模拟;决策支持:通过关键廊道识别与冗余性分析,为保护策略提供“靶向目标”(如优先保护高 CLR 增幅的廊道)。
2026-01-29 10:04:04
716
原创 YOLOv11改进 | 引入EGA与LEG模块:低质量特征增强+局部特征提取,遥感与小目标检测高效涨点
本文针对YOLOv11在遥感和小目标检测中的局限性,提出引入EGA(低质量特征增强)和LEG(局部特征提取)模块的创新方案。EGA通过自适应增益网络和低秩去噪增强模糊、低对比度特征;LEG采用多尺度深度可分离卷积和动态位置注意力强化小目标细节捕捉。在遥感道路检测、无人机行人识别等场景中,该方法使mAP提升8-15%,召回率提升12-18%。核心代码实现了EGA的自适应特征增益与去噪功能,以及LEG的多尺度局部特征提取与动态注意力机制,可无缝集成到YOLOv11骨干网络中,显著提升对低质量图像和小目标的检测性
2026-01-28 18:00:00
1147
原创 RT-DETR 动态推理优化:根据场景自适应选择 r18/r50 模型
RT-DETR 动态推理优化:场景自适应模型选择 摘要 本文提出一种基于 RT-DETR 的动态推理优化框架(AIF),通过轻量级场景复杂度评估实现 R18/R50 模型的自适应选择。该方案在保持检测精度的同时显著提升边缘设备性能: 35%推理速度提升:在 T4 GPU 上实现 56 FPS 28%功耗降低:Jetson Nano 平均功耗降至 5.8W <0.8%精度损失:复杂场景下接近 R50 单模型性能 核心创新包括: 0.5M参数的 MobileNetV3 场景评估器 模型热切换与特征共享机制
2026-01-28 14:15:00
1326
原创 考虑道路拓扑约束的Apollo决策算法可行域生成方法仿真
"""车道类型枚举"""MAIN_ROAD = 0 # 主路车道RAMP = 1 # 匝道TEMPORARY = 2 # 临时车道(施工改道)BIKE_LANE = 3 # 非机动车道EMERGENCY = 4 # 应急车道"""连通类型枚举"""LONGITUDINAL = 0 # 纵向连通(同一车道前后路段)LATERAL = 1 # 横向连通(相邻车道变道)HIERARCHICAL = 2 # 层级连通(主路与匝道/辅路)"""转向权限枚举"""ALLOWED = 0 # 允许。
2026-01-28 09:30:51
639
原创 RT-DETR 在医疗影像中的应用:rtdetr-r50 的病灶检测实践
RT-DETR-R50凭借多尺度特征融合和端到端检测优势,在医疗影像病灶检测中展现出显著价值:肺部CT结节检测召回率达95%,推理速度74 FPS满足临床实时需求,且可无缝集成PACS系统。通过场景化代码实现(如DICOM处理、PACS通信)、性能优化(剪枝量化)和临床验证,本文为AI辅助医疗诊断提供了完整技术方案。未来,随着3D模型、多模态融合技术的发展,RT-DETR将进一步推动医疗影像诊断向智能化、精准化迈进。工程建议。
2026-01-27 18:00:00
385
原创 Linkage Mapper 进阶分析:多物种生态廊道协同构建
摘要: 多物种生态廊道协同构建通过整合不同物种的栖息地需求与扩散能力,优化保护资源利用。Linkage Mapper作为连通性分析工具,虽支持单物种分析,但需结合图论与多目标优化技术(如NSGA-II)实现多物种协同。核心挑战包括栖息地需求冲突、扩散能力差异及廊道优先级矛盾。解决方案包括共享源地识别、差异化阻力面构建及协同廊道生成,适用于森林-湿地复合系统、城市绿地网络等场景。通过加权融合阻力面与多目标优化,平衡各物种连通性,实现高效生态保护。
2026-01-27 13:45:00
1286
原创 YOLOv改进 | PConv新型风车形卷积和SPConv二次创新改进(移动风车卷积,使它充分活跃起来),增强特征提取
本文提出了一种改进YOLOv11目标检测模型的方法,通过引入PConv新型风车形卷积和SPConv二次创新改进卷积,显著提升了特征提取能力。PConv采用独特的"风车形"卷积核排列(4个叶片状子卷积核),实现了多方向特征捕捉和动态感受野调整。SPConv在此基础上增加二次卷积交互和动态权重调整机制,进一步增强了特征表达能力。该方法在保持模型轻量化的同时,显著提升了小目标检测精度(AP),适用于移动端实时检测、嵌入式设备部署和工业视频流分析等场景。实验证明,改进后的模型在移动设备上可达到2
2026-01-27 09:30:10
486
原创 Linkage Mapper 定制化工具开发——基于 Linkage Mapper 源码扩展新功能(适合程序员)
基于 Linkage Mapper 源码的定制化开发,是突破官方功能限制、实现“按需定制”的核心手段。本文通过“动态阻力廊道生成”案例,详解了从需求分析、源码修改到测试部署的全流程,展示了如何通过参数扩展、模块重写与主流程调整实现个性化功能。可行性:Linkage Mapper 的模块化源码结构与清晰的配置管理机制,降低了定制化开发的门槛;灵活性:支持从简单参数扩展到复杂逻辑重写,可适配科研、工程、教学等多元场景;价值。
2026-01-26 18:00:00
931
原创 MATLAB 使用 AlexNet 网络进行步态识别与仿真分析
MATLAB 使用 AlexNet 网络进行步态识别与仿真分析 摘要:本文介绍了使用 MATLAB 深度学习工具箱实现 AlexNet 网络进行步态识别的方法。AlexNet 是一种经典的深度卷积神经网络,包含 5 个卷积层和 3 个全连接层,采用 ReLU 激活函数和 Dropout 技术。文章详细说明了两种应用场景:1) 直接使用预训练模型进行特征提取和分类;2) 通过迁移学习微调网络以适应特定任务。提供了完整的 MATLAB 代码实现,包括数据加载、网络构建、训练和评估过程。实验表明,该方法在步态识别
2026-01-26 14:00:00
738
原创 YOLOv11改进 | Mamba-YOLOv11-B:基于SSM的高效全局建模,平衡性能与效率
摘要: 本文提出Mamba-YOLOv11-B,通过集成状态空间模型(SSM)改进YOLOv11的全局建模能力。SSM以$O(N)$复杂度实现长程依赖捕捉,在轻量级(参数+5%)和实时性(>40 FPS)下提升多任务性能(检测mAP+6.2%,分割mIoU+5.8%)。关键技术包括:1) SSM共享模块实现多任务特征复用;2) 动态状态转移适应场景变化。实验证明其在自动驾驶(检测+分割)、边缘设备、安防监控和医学影像等场景中均显著优于基线模型,平衡了性能与效率。代码提供SSM多任务共享模块和集成头的P
2026-01-26 09:45:06
810
原创 RT-DETR 与 Transformer 检测模型对比:性能与效率的平衡之道
RT-DETR通过轻量化骨干(ResNet-18/50)、高效Transformer(AIFI+CCFF)、动态策略(DCAM+蒸馏)效率优势:42 FPS@T4(r50)、20 FPS@Jetson Nano(r18),远超原始DETR(10 FPS)和Swin-T(18 FPS);性能优势:小目标mAP@0.5达51.3%(r50),比Deformable DETR高15.1个百分点;部署优势:支持TensorRT/ONNX/TFLite量化,从服务器到边缘设备均可高效运行。选型建议。
2026-01-25 22:15:16
419
原创 Apollo决策层对交通参与者意图预测的不确定性建模与仿真
"""交通参与者意图类别"""STRAIGHT = 0 # 直行LEFT_TURN = 1 # 左转RIGHT_TURN = 2 # 右转STOP = 3 # 停车YIELD = 4 # 让行CROSS = 5 # 横穿(行人/非机动车)@dataclass"""轨迹点(时间戳, x, y, vx, vy, ax, ay)"""x: floaty: floatvx: floatvy: floatax: floatay: float@dataclass。
2026-01-25 08:53:22
553
原创 从 DETR 到 RT-DETR:实时目标检测技术的演进与突破
DETR开创端到端 Transformer 检测范式,却因计算冗余难以实时;RT-DETR通过轻量化骨干高效 Transformer动态策略(DCAM/DDM/蒸馏),实现“精度-速度-轻量”平衡,推动 DETR 在工业界规模化落地。核心价值:RT-DETR 证明 Transformer 架构可通过轻量化改造适配边缘与云端,为实时目标检测开辟了“高效+高精度”的新路径。部署建议边缘场景选 RT-DETR-R18(动态通道版),简单场景降计算、复杂场景保精度;
2026-01-24 13:53:21
423
原创 ChatGPT vs. 文心一言 vs. 通义千问:中文创作终极搭档深度评测
在数字内容爆炸式增长的时代,中文创作已从少数专业人士的专属领域,演变为全民参与的信息生产活动。无论是市场文案、技术博客、社交媒体内容,还是创意小说、商业报告,高质量、高效率的文本创作已成为数字经济时代的关键生产力。传统创作过程面临着创意枯竭、效率瓶颈、风格单一等痛点,而生成式AI的崛起,正为这一古老行当带来革命性变化。当前,三大主流AI创作工具——OpenAI的ChatGPT、百度的文心一言(ERNIE Bot)和阿里的通义千问(Qwen),均宣称在中文创作领域具备卓越能力。它们在技术路线、文化理解、创作风
2026-01-24 11:46:08
1042
原创 Linkage Mapper 结果导出为通用格式——栅格转 GeoJSON、矢量转 KML(跨平台共享)
摘要: 本文介绍如何将Linkage Mapper生态分析工具输出的专业GIS格式(如Shapefile、GeoTIFF)转换为通用格式(GeoJSON、KML),以解决跨平台共享难题。GeoJSON适合Web地图集成(轻量、JSON结构),KML支持Google Earth 3D可视化。转换核心包括:矢量转KML需调整坐标顺序并保留属性,栅格转GeoJSON需通过矢量化处理。关键原则包括统一WGS84坐标系、UTF-8编码、数据轻量化及元数据保留。应用场景涵盖科研数据共享、决策汇报和公众参与平台,通过自动
2026-01-23 18:00:00
1231
原创 YOLOv改进 | YOLOv11更换主干Backbone之MobileNetV2(轻量化主干网络结构--高效轻量移动模型)
本文提出将YOLOv11的主干网络替换为轻量化的MobileNetV2,以提升模型在移动端设备的部署效率。MobileNetV2通过倒残差结构和线性瓶颈层,显著减少了计算量和参数量(降至1M~3M),同时保持多尺度特征提取能力。实验表明,改进后的模型在移动设备上可实现20-30 FPS的实时检测,适用于手机APP、无人机和工业监控等场景。核心代码展示了倒残差块的实现,通过深度可分离卷积和通道扩展/压缩实现高效特征提取。
2026-01-23 13:30:00
1213
原创 基于强化学习的Apollo决策算法探索-利用平衡策略仿真
"""Apollo决策状态空间定义(以无保护左转为例)"""# 状态维度:[v_e, d_o, v_o, h, s](自车速度、对向车距、对向车速、车头时距、信号灯状态)self.low = np.array([0.0, 5.0, 0.0, 0.5, 0.0]) # 最小值self.high = np.array([30.0, 100.0, 50.0, 5.0, 1.0]) # 最大值(信号灯:0=无,1=红,2=绿)"""Apollo决策动作空间定义(无保护左转)"""
2026-01-23 12:13:51
847
广度优先遍历 实例
2016-08-02
深度优先遍历算法
2016-08-02
C语言停车场管理系统设计和实现
2024-01-11
2023年5月软考网络工程师考前冲刺密卷(案例分析).pdf
2023-09-01
python简明教程为唯一指定简体中文译本
2023-05-25
ChatGPT:AI模型框架研究
2023-05-25
CRT_64位工具
2018-12-06
老鼠走迷宫 算法 实例
2016-08-02
go学习资料.rar
2019-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅