comfyUI基础教程:IPAdapter,从风格转换到无所不能!

前言

IPadapter是SD开源社区自2023年下半年推出的风格迁移系列模型,由于能力非常强大,现在已经成为comfyUI体系里面实现各种功能不可或缺的关键模块之一。

包括国内大厂开源的photomaker和instantID,本质上都是

举个例子,和之前讲过的controlnet结合使用,IP-Adapter(用于风格)和ControlNet(用于构图),能够实现视频完美的转换风格。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

首先,使用IP-Adapter在/ComfyUI/models/ipadapter目录中安装所需的IP-Adapter模型。

可以看到,IP-Adapter模型数量非常多,初学者会看晕。

详细的介绍如下:

  • /ComfyUI/models/clip_vision

  • CLIP-ViT-H-14-laion2B-s32B-b79K.safetensors,下载并重命名

  • CLIP-ViT-bigG-14-laion2B-39B-b160k.safetensors,下载并重命名

  • /ComfyUI/models/ipadapter,如果不存在则创建它

  • ip-adapter_sd15.safetensors,基本模型,平均强度

  • ip-adapter_sd15_light_v11.bin,轻型影响模型

  • ip-adapter-plus_sd15.safetensors,Plus 模型,非常强大

  • ip-adapter-plus-face_sd15.safetensors,脸部模型,肖像

  • ip-adapter-full-face_sd15.safetensors,更强的人脸模型,不一定更好

  • ip-adapter_sd15_vit-G.safetensors,基础模型,需要 bigG 剪辑视觉编码器

  • ip-adapter_sdxl_vit-h.safetensors,SDXL 模型

  • ip-adapter-plus_sdxl_vit-h.safetensors,SDXL plus 型号

  • ip-adapter-plus-face_sdxl_vit-h.safetensors,SDXL 人脸模型

  • ip-adapter_sdxl.safetensors,vit-G SDXL 模型,需要 bigG 剪辑视觉编码器

此外:

大多数 FaceID 型号都需要 LoRA。如果您使用它,IPAdapter Unified Loader FaceID并且遵循命名约定,它将自动加载。否则,您必须手动加载它们,请注意每个 FaceID 模型都必须与其自己特定的 LoRA 配对。

  • /ComfyUI/models/loras

  • ip-适配器-faceid_sd15_lora.safetensors

  • ip-适配器-faceid-plusv2_sd15_lora.safetensors

  • ip-adapter-faceid_sdxl_lora.safetensors , SDXL FaceID LoRA

  • ip-adapter-faceid-plusv2_sdxl_lora.safetensors,SDXL 加 v2 LoRA

但总体来说,无非分为两类,一类是早期不带PLUS的,基本已经弃用。

另一类是带PLUS的,目前主力;其中又分为普通的PLUS,和带face(主攻面部特征)的。

PLUS里面,又根据SD模型体系分为了1.5体系和XL体系,分别适配两代模型。

所以,你只要记住,用风格迁移,就用不带FACE的,希望换脸,就用带FACE的。大致就可以了。

那么,IP-Adapter应该怎么用呢?

需要重点指出的是,在3月份,IP-Adapter在COMFYUI的代码经历过一次全面重写,导致前后不再兼容,3月之前称之为旧版,3月之后称之为新版。

以上是旧版的faceID-V2的适配,由于我的节点已经更新过,老工作流里面的V1节点已经不再获得支持。无法再使用。

新版本实现同样功能的节点,明显更加简洁。用户无需再自行设置难记的模型搭配。

只需要选择不同的用法,节点内已经自行配置好了各种用法搭配。

其实,关键还是要找准办法。在IP-Adapter的节点文件夹里面,我们可以找到example,这里面,作者已经给出了示例。

导入示例工作流,即可看到不同的搭配用法。

一般来说,我们常用的主要有下面几种功能:

以上工作流都可以在openart.ai找到。当然,访问这个网址需要魔法。

它的好处是什么呢?

显而易见的一点是,有了IPAdapter,我们不一定需要训练风格LORA了。

IPAdapter的效果越强,训练LORA的必要性就越低。

另外,在工作流体系里面,它可以变化的玩法太多了。以后我们出视频拆解工作流的时候,再逐一细讲。本篇作为基础教程,就讲到这里。

要熟悉IP的玩法,就必须自己去把示例工作流看一遍,因为它还是一个经常频繁更新的技术模块,因为保持一定的更新了解是必要的。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值