[ComfyUI教程]图像生成模型 OmniGen,人物一致性处理的也太好了

前言

这个插件在处理人物一致性上出奇的强大,可以用来创作儿童绘本了,快来看我介绍。

0****1

介绍

牛逼了,国内最近出了个很不错的图像生成模型 OmniGen,由北京人工智能研究院开源。

OmniGen 是一个统一的图像生成模型,可用于执行各种任务,包括但不限于文本到图像生成、主题驱动生成、身份保留生成、图像编辑和图像调节生成。OmniGen不需要额外的插件或操作,它可以根据文本提示自动识别输入图像中的特征(例如,所需的物体、人体姿势、深度映射)。

很有趣,我最喜欢的是里面人物一致性,测试下来挺不错的。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

02

安装使用

2.1 插件安装

插件项目地址:

https://github.com/AIFSH/OmniGen-ComfyUI

管理器搜索 omnigen 就可以安装了

安装好了记得重启服务

2.2 模型安装

模型页面:https://hf-mirror.com/Shitao/OmniGen-v1/tree/main

要全部下载,存放路径:\models\AIFSH\Shitao\OmniGen-v1

不方便科学的小伙伴,文末也提供了模型和工作流的网盘下载

对了,这个插件对Transformer依赖要4.45以上,记得升级下,不能会冲突。

03

工作流介绍

核心节点就一个,OmniGenNode,这个没啥好说的,参数默认就好了。

上面就是简单的文生图,这个中规中矩,我们主要围绕人像迁移来举例子

就拿上面这个举例子,我们让这个姑娘吃早餐

加载一张图片接入左边参数images_1节点,然后提示词需要做出提示,让系统知道是哪张图片,提示词如下:

Little girl in image_1 eating breakfast at the table

可以看到,我们有指明了图片来自 image_1,原理就是这么简单,下面这个迁移的不错,不管是衣服、样貌都迁移的不错。

这是单张的,接下来我们测试多张的情况,这次加载2张照片

The man in image_1 wraps his arm around the woman’s waist and looks into the camera,woman is in image_2

图片 1 中的男子搂着女子的腰,看着镜头,女子在图片 2 中。

效果不错吧,这效果,完全可以造谣了哈哈。

还有更强的用法,我们还可以固定他们的姿势,下面这个案例是在让上面男女坐在咖啡厅,然后姿势的话参考了另外一张图,我们先通过提取骨骼图,再当作参数参入,这样就搞定了。

提取姿势提示词:Detect the skeleton of human in image_1

整合提示词:Following the pose of this image:image_3,A man in image_1 and a woman in image_2 are sitting and chatting in a cafe

我只能说有点利害,这让我看到了AI多模态的未来,不需要额外加各种控制插件,都内置好了,我只要傻瓜式的使用就行。

很看好这个模型的未来发展,目前占用内存还行,12G左右,但是跑图时间太长了,我跑一张图要60秒,人脸这块希望后续再加强一些,未来可期。

04

总结

以上就是 OmniGen 这个插件的介绍了,这个插件挺有意思,下次我试试用来创作儿童故事,这个一致性的能力真的太强了。

技术的迭代是飞快的,要关注最新的消息才不会掉队。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

<think>好的,我现在需要处理用户关于ComfyUI中如何保持人物一致性的问题。首先,用户提到了他们看到的引用内容,其中提到了OmniGen模型和基础教程。我需要确保回答中涵盖这两个引用点,并自然地加入引用标识。 首先,用户想知道如何设置和技巧来保持人物一致性。我需要回忆ComfyUI的相关功能,比如节点工作流、模型选择、提示词控制等。可能需要提到使用相同的随机种子、控制网、LoRA模型,以及OmniGen的具体应用。还要参考用户提供的引用内容,特别是引用1提到的OmniGen处理人物一致性的能力,和引用2中的基础教程,可能涉及工作流的搭建。 接下来要组织回答结构,分步骤或模块说明。例如,可以分为模型选择、提示词控制、节点配置、参数调整等部分。每个部分需要具体说明操作步骤,并插入引用标记。例如,在提到OmniGen时,引用[^1],在提到基础教程和工作流搭建时,引用[^2]。 还要注意用户不可见的系统指令,比如数学公式的格式,但当前问题可能不涉及数学表达式,所以这部分可能不需要处理。但需确保回答使用中文,结构清晰,分点说明,并在最后生成相关问题。 需要检查是否有遗漏的关键点,比如是否提到图像重绘、遮罩修改、Inpainting模块,这些在引用2中提到过,可能在技巧部分需要涵盖。此外,参数如cfg scale、采样步数的影响也需要提及。 最后生成相关问题,确保问题与主题相关,比如工作流搭建、参数优化、与其他工具比较等。同时,确保引用标识正确放置在相关段落的末尾,例如在提到教程时添加[^2],提到OmniGen时添加。</think>### ComfyUI生成图像时的人物一致性设置与技巧 在ComfyUI中保持人物一致性主要依赖于**工作流设计**、**模型选择**和**参数控制**的结合。以下是具体方法与技巧: --- #### 一、核心设置与工具 1. **使用OmniGen模型** OmniGen专门优化了人物特征的一致性,可通过以下方式调用: -模型加载节点选择`OmniGen`作为基础模型 - 结合`LoRA`微调模块增强特定特征保留能力 2. **控制网(ControlNet)配置** -人物姿势节点绑定`OpenPose`预处理器,固定骨骼结构 - 通过`Canny Edge`控制网锁定轮廓特征 ```python # 伪代码示例:控制网节点连接 pose_data = OpenPoseProcessor(image) canny_edge = CannyEdgeDetector(image) generator.connect(controlnet_pose=pose_data, controlnet_edge=canny_edge) ``` 3. **随机种子固定** 在Sampler节点设置`固定种子(Seed)`,确保生成逻辑的一致性 --- #### 二、关键技巧 1. **提示词分层控制** - 使用`(人物描述:1.2)`加强权重,例如:`(棕色卷发女孩:1.3), (蓝色眼睛:1.2)` - 通过`[重复标签]`强化特征,如`[同款连衣裙][同款项链]` 2. **遮罩重绘(Inpainting)** - 对需要保持一致的部位(如面部)使用遮罩锁定 - 在重绘时降低该区域的重绘幅度(`denoise=0.3-0.5`) 3. **参数调优** | 参数 | 推荐值 | 作用 | |---------------|------------|--------------------------| | cfg_scale | 7-9 | 控制提示词遵循程度 | | steps | 25-35 | 保证细节稳定性 | | denoising | 0.6-0.7 | 平衡创新与一致性 | --- #### 三、进阶工作流设计 1. **人物模板迭代** 将首张满意输出作为`Reference Image`输入到Image Loader节点,后续生成通过`CLIP Vision`编码器提取特征 2. **多模型融合** ```mermaid graph LR A[OmniGen基础模型] --> B(LoRA特征适配器) B --> C{ControlNet姿势控制器} C --> D[最终输出] ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值