【comfyui教程】从ComfyUI安装到Flux大模型文生图教程

前言

目前使用 Stable Diffusion 进行创作的工具主要有两个:WebUI 和 ComfyUI。而更晚出现的 ComfyUI 凭借超高的可定制性和复现性迅速火遍全球。早就知道ComfyUI,一直没有机会来尝试,之前写文章讲过 Flux 的文生图质量远超 StableDiffusion,所以就想一起尝试,今天就记录分享一下。

Flux 模型的硬件配置要求比较高,Flux 官方有三个版本,一个是 Pro 只能通过 API 调用的方式;第二个是 DEV,开源的质量最好的模型;Schnell 开源的快速版本;最快最小的 Schnell FP8 版本,显存占用最少都要 14GB,对显卡的性能要求非常高,后面的 GGUF 和 NF4 版本都是量化版本,可以在低显存的显卡上运行。

image

我就不耗费精力去本地化运行这些模型了,后面深入研究后再尝试。我会使用硅基流动的API接入Flux,这是一个性价比非常高的综合在线大模型网站。ComfyUI 需要本地安装,然后接入硅基流动的 API,有一些 StableDiffusion 的经验,去尝试 ComfyUI 应该问题也不算太大。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

安装 ComfyUI

ComfyUI 是一个基于节点流程式的AI绘图工具WebUI,官方开源地址:https://github.com/comfyanonymous/ComfyUI

安装步骤,GitHub官方文档写的比较清楚。这里记录一下自己的安装步骤:

首先下载源码

git clone  https://github.com/comfyanonymous/ComfyUI  

我的电脑之前安装过一些大模型,已安装过一些显卡驱动和 Python3 依赖包,所以先忽略官方的提示直接安装依赖启动

pip install -r requirements.txt  
python main.py  

很幸运,直接成功了,看到控制台显示下面的情况表示成功启动:

image

我自己改了一下端口号,改成 8188,成功后在后台直接访问,看到以下的页面:

image

简单分享一下 ComfyUI 一些组件和 StableDiffusion 的对应关系。从左往右从上往下介绍:Load Checkpoint (加载检查点) :
作用: 用于加载预训练模型的检查点,包括模型、CLIP 和 VAE,为后续的图像生成提供必要的基础。

CLIP Text Encode (Prompt) (CLIP 文本编码(提示)) :
作用: 将输入的文本提示转换为 CLIP 编码,包含正面/负面提示词,使模型能够理解和处理描述的内容,以生成相关图像。

Empty Latent Image (空潜在图像) :
作用: 创建一个空的潜在图像,设置图像的宽度、高度和批量大小,为后续生成过程打下基础。

KSampler (K 采样器) :
作用: 从潜在空间中生成图像,允许设置多个参数(如种子、去噪程度、生成步数等)以控制生成图像的质量和样式。

VAE Decode (VAE 解码) :
作用: 将从 KSampler 生成的潜在样本解码为可视化图像,将计算结果转化为最终图像。

Save Image (保存图像) :
作用: 将处理后的图像保存到指定位置,设置文件名前缀,以便于管理和识别输出的图像文件。

如果有 StableDiffusionUI 的实际操作经验,就应该很熟悉。

安装 ComfyUI-Manager:

ComfyUI-Manager 是一个ComfyUI插件管理器,通过这个插件可以方便的安装其他插件。

也是开源的,开源地址:https://github.com/ltdrdata/ComfyUI-Manager.git

GitHub上安装步骤也有描述,也很简单,到特定目录直接下载源码就行了:在安装目录里的 ComfyUI/custom_nodes 目录下执行 clone 命令

git clone https://github.com/ltdrdata/ComfyUI-Manager.git  

image

随后在命令行重启ComfyUI,重启过后就看到相关的 ComfyUI-Manager安装成功的日志:

image

安装BizyAir

BizyAir 是硅基流动开发的一个 ComfyUI 插件,是一个创新的云服务节点,可以在没有高性能 GPU 的轻薄笔记本上,轻松运行 ComfyUI 以及最新的 FLUX 模型,实现高质量的图像生成和处理。

开源地址:https://github.com/siliconflow/BizyAir (有使用教程)

现在在 ComfyUI 主界面点击右下角的 Manage 就能打开这个 ComfyUI-Manager,顺便点击 Custom Nodes Manage 安装 BizyAir:

image

image

安装完成后,先注册硅基流动这个大模型云平台,我们要使用它的 API 能力实现低成本的 FLUX 大模型的文生图/图生图的功能。

可以使用我的链接:https://cloud.siliconflow.cn/i/5ObwfSCD
注册后有 14 元额度,受邀方和邀请方各得 2000 万 Tokens
在 FLUX 模型里面可以看到 Schnell 是免费的,收费的价格也非常低。

image

注册完成后需要创建一个 API key:

image

将其填写到 BizyAir 插件中:

image

工作流解释

在 BizyAir 小控件上点击 Examples 按钮,找到 Flux 的案例,这里我选择的是一个文生图的案例,会自动生成一些 Node 节点,并且节点名称自动翻译成中文了。接下来可以直接点击 Queue Prompt 按钮生成具体的图片。我把节点都拉开了,可以更清晰地看出他们之间的关系。

image

工作流展示了从文本提示词到图像生成的完整过程,包括模型加载、随机噪声生成、提示词编码、采样、潜在图像初始化、VAE 解码以及图像预览的各个步骤,不同节点之间通过输入和输出的连接,为了操作这些节点,可以在界面上直接拖动节点,将其放置在合适的位置。通过点击节点,并拖出连接线,用户可以将一个节点与另一个节点连接起来,形成一个操作流程。每个节点都有其独特的功能,比如输入节点用于接受外部数据,输出节点则用于传递处理结果,通过双击节点,用户还可以打开属性面板,进行详细配置和调整。比StableDiffsuion UI操作更为复杂,但是自由度更高,下面就简单介绍一下其中的各个节点的解释:

  • BizyAir DualCLIPLoader (#36)

  • 功能:加载 CLIP 模型。

  • 作用:加载两个 CLIP 模型,提供文本和图像的编码支持。

  • 操作:定义模型的名字(clip_name1clip_name2)和类型。

  • BizyAir Load Diffusion Model (#48)

  • 功能:加载扩散模型。

  • 作用:提供生成图像的基础模型。

  • 操作:设置 UNet 模型的名字和权重数据类型。

2. 提示词编码

  • BizyAir CLIP Text Encode (Prompt) (#37)

  • 功能:对文本提示词进行编码。

  • 作用:将文本提示转换为模型可理解的格式。

  • 操作:输入你的文本提示。

3. 随机噪声生成

  • BizyAir RandomNoise (#59)

  • 功能:生成随机噪声。

  • 作用:生成图像的起始噪声。

  • 操作:设置噪声的种子以及是否固定生成方式。

4. 采样与调度

  • BizyAir BasicGuider (#47)

  • 功能:引导模型生成过程。

  • 作用:确保生成的图像符合提示词。

  • 操作:连接模型和提示词编码的输出。

  • BizyAir KSamplerSelect (#60)

  • 功能:选择采样方法。

  • 作用:选择生成图像时的采样算法(如 Euler)。

  • 操作:设置采样方法名称。

  • BizyAir BasicScheduler (#58)

  • 功能:管理生成过程的调度。

  • 作用:控制生成图像的步数和去噪程度。

  • 操作:设置调度器类型、步数和去噪程度。

5. 潜在图像初始化

  • Empty Latent Image (#51)

  • 功能:初始化一个空的潜在图像。

  • 作用:创建初始化的图像空间。

  • 操作:设置图像的宽度、高度和批量大小。

6. 图像生成

  • BizyAir SamplerCustomAdvanced (#50)

  • 功能:自定义高级采样器。

  • 作用:结合前面的节点用于生成图像的潜在表示。

  • 操作:连接噪声生成、引导器、采样方法的输出,以及空潜在图像。

7. VAE 解码

  • BizyAir Load VAE (#55)

  • 功能:加载变分自编码器 (VAE)。

  • 作用:将潜在图像转换为实际图片。

  • 操作:设置 VAE 模型的名字。

  • BizyAir VAE Decode (#54)

  • 功能:VAE 解码。

  • 作用:将潜在图像解码为实际图像。

  • 操作:连接 VAE 模型和潜在图像样本的输出。

8. 结果预览

  • Preview Image (#56)

  • 功能:预览生成的图像。

  • 作用:显示最终生成的图像。

  • 操作:连接解码后图像的输出。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值