【AIGC】AI绘画本地部署教程及原理简介(ComfyUI+flux.1)

一、简介

  这篇博客主要介绍一款非常强大的 开源AI绘画(文生图)工具ComfyUI ComfyUI是一个基于节点流程式的AI绘图工具WebUI,它通过将Stable Diffusion的流程拆分成节点,实现了工作流的定制和可复现性。最直观的体现就是,你定义和设置的任何工作流都可以以json文件的格式进行保存,反之其他人创建的好的工作流只要分享出了其json文件,你也可以瞬间导入使用并在此基础上进行修改编辑。


  

二、安装部署

1.ComfyUI安装

  这里直接贴上项目地址https://github.com/comfyanonymous/ComfyUI,下面给的安装方式写的很详细了,这里说一下本人的具体部署步骤。

  • (1)首先安装GPU环境(CPU也可以,没有测试,速度应该较慢),显存最好在8G以上,并配置好cuda和显卡驱动。

  • (2)拉取项目,并创建一个conda虚拟环境,在虚拟环境中安装项目所需要的依赖,即根目录下requirements.txt当中的所有内容。进入根目录 执行pip install -r requirements.txt。这个项目需要torch环境,torch的安装建议按照pytorch官网的安装方式单独进行安装,避免出现版本不匹配问题。

  如果安装无误,在项目根目录下执行 python main.py,即可启动ComfyUI的web服务。

### ComfyUI FLUX.1 工作流节点文档和使用 FLUX.1 是一种用于处理复杂数据流动的工作流引擎,特别适用于构建高效的数据管道。ComfyUI FLUX.1 提供了一系列工作流节点来简化开发过程。 #### 节点分类 ComfyUI FLUX.1 的工作流节点主要分为几大类: - **输入/输出节点 (I/O Nodes)**:负责接收外部数据或将内部数据发送到其他系统。 输入节点可以配置为从文件、数据库或其他API获取初始数据集;而输出节点则能够将最终结果保存至指定位置或通过网络传输给下游服务[^2]。 - **转换节点 (Transformation Nodes)**:执行各种形式的数据清洗、映射以及聚合操作。 这些节点允许用户定义复杂的逻辑表达式来进行字段级别的修改或是创建新的派生属性[^3]。 - **控制结构节点 (Control Structure Nodes)**:实现条件分支判断、循环迭代等功能。 控制结构使得流程更加灵活多变,可以根据运行时的状态动态调整后续路径的选择[^4]。 #### 使用实例 下面是一个简单的Python代码片段展示如何利用这些概念搭建基本框架: ```python from comfyui_flux import Workflow, InputNode, OutputNode, TransformNode # 创建一个新的工作流对象 workflow = Workflow() # 定义并连接各个组件 input_node = InputNode(source="file", path="/data/input.csv") transform_node = TransformNode(operation=lambda row: {**row, "new_field": row["old_field"] * 2}) output_node = OutputNode(destination="database") # 将节点链接起来形成完整的链路 workflow.connect(input_node, transform_node).connect(transform_node, output_node) # 执行整个流水线 result = workflow.run() ``` 此示例展示了如何读取CSV文件中的记录,在每条记录上应用自定义变换函数,并最后把更新后的版本存入关系型数据库表内[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值