自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(649)
  • 收藏
  • 关注

原创 【值得收藏】OpenAI论文解读:大模型幻觉问题的本质与未来改革方向

OpenAI最新研究揭示大模型幻觉源于预训练阶段的"下一个词预测"机制及现行评估体系对猜测行为的奖励。论文指出,以准确率为导向的评估方法促使模型冒险猜测而非承认不确定性,导致高准确率伴随高错误率。研究澄清了五大幻觉误区,强调改革评估体系,对自信错误答案施加更重惩罚,是解决幻觉问题的关键。

2025-09-08 13:20:04 700

原创 【收藏学习】AI提示词工程完全指南:原理、方法与实践技巧

文章介绍了大语言模型的基本原理及其对提示词编写的影响。模型回复依赖于上下文,通过Transformer架构处理词元序列。提示词应遵循具体性、明确性原则。大语言模型没有内置记忆,记忆由系统消息和对话消息组成,有长度限制。不同位置的上下文有不同权重,系统消息优先级高于对话消息,越新的指令优先级越高。编写提示词时需关注权重分配,确保重要指令放在重要位置。

2025-09-08 11:58:27 796

原创 大模型微调全攻略:SFT(监督微调)实战经验分享,收藏必备!

SFT(监督微调)是大模型训练的关键环节,需从数据质量、参数调优、效果评估等多维度精心设计。文章介绍了SFT基础概念、与其他微调方法的区别、实践流程、数据构建策略、技术实施细节、参数调优方法、效果评估体系和风险防控措施。成功SFT遵循"数据为王、质量优先、持续迭代"原则,通过精心微调提升模型特定领域能力,同时保持通用能力。

2025-09-08 11:54:51 802

原创 【建议收藏】大模型术语全解析:小白入门,程序员进阶必备指南

本文系统介绍大模型核心术语,涵盖基础概念(大语言模型、参数、Token等)、模型架构(Transformer、BERT、GPT等)、训练方法(预训练、微调、RLHF等)及特性(涌现、幻觉、思维链等)。通过清晰解释这些术语,帮助读者理解大模型工作原理和应用场景,为掌握AI技术打下坚实基础,适合初学者和程序员参考学习。

2025-09-07 09:15:00 534

原创 传统知识库 VS AI知识库的核心差异,AI知识库与RAG技术详解

本文对比了传统知识库与AI知识库的核心差异,详细解析了RAG(检索增强生成)技术的工作原理:内容切块、向量化转换、语义匹配。AI知识库能直接理解问题并提炼答案,而传统知识库仅提供关键词匹配的文件。文章强调良好的文档整理(标签、命名)能显著提升RAG效果,让AI知识库成为真正的"智能助手",而非简单的文件堆砌。

2025-09-07 09:00:00 624

原创 【收藏必学】从RAG到KAG:大模型知识增强生成实战指南

本文探讨了从RAG到KAG的大模型技术演进,分析了传统RAG在垂直领域应用的局限性,提出了KAG框架如何通过整合知识库与结构化推理解决检索不精准、逻辑不稳定等问题。文章详细介绍了KAG的知识索引构建、分层知识表示及逻辑符号引导的推理框架,以及KAG-Thinker如何实现从外部依赖到内化推理的创新路径,为提升大模型在垂直领域的精准性和可靠性提供了技术路线。

2025-09-07 08:45:00 1244

原创 Ragflow + 高精度文档解析:构建高性能 RAG 知识库的实战方案

本文针对RAGFlow框架中DeepDoc解析工具的局限性,提出使用TextIn xParse进行优化的解决方案。通过对比分析不同类型文档解析工具的特点,作者详细介绍了在RAGFlow中集成TextIn xParse的两种方法:解析后上传和代码修改。实战教程展示了如何替换解析策略,并通过效果对比验证了TextIn xParse在复杂文档解析上的显著优势,为提升RAG系统性能提供了实用参考。

2025-09-06 08:45:00 804

原创 收藏!大语言模型(LLM)完全指南:从入门到实战,掌握AI智能体的核心技术

本文全面介绍大语言模型(LLM)的基础概念、技术架构和应用实践。从核心特点、发展历程入手,深入解析Transformer架构的编码器、解码器和自注意力机制等核心技术,详述内容创作、智能客服等应用场景,并提供模型选型指南、RAG技术和术语解释,帮助读者全面掌握LLM知识,为AI智能体时代做好准备。

2025-09-06 08:15:00 528

原创 程序员必读收藏:投机解码技术深度解析 - 大模型推理加速的终极指南

文章介绍了投机解码这一提升大模型推理速度的关键技术。采用Draft-then-Verify范式,由草稿模型生成多个token,目标模型并行验证。详细讨论了两种草稿模型设计(独立和自草稿生成)的优缺点,以及贪婪解码和投机采样验证规则如何平衡输出质量和效率。最后指出当前面临的主要挑战是平衡草稿生成效率与准确性,以及将投机解码整合到多模态等先进技术中。

2025-09-06 08:00:00 795

原创 【值得收藏】LLaMA模型架构详解:小白也能看懂的大模型核心变革

文章详细解析了LLaMA模型架构的核心变革,包括:从post-norm到pre-norm的归一化方式转变,从LayerNorm到RMSNorm的优化,从ReLU到SwiGLU的激活函数升级,以及从Sinusoidal到RoPE的位置编码改进。这些变化提高了模型训练稳定性和性能,为LLaMA系列及其衍生模型(如千问Qwen)奠定了基础,成为大模型架构的重要参考范式。

2025-09-05 08:45:00 712

原创 从会用AI到会造AI:AI Agent五大架构深度解析,建议收藏学习

文章介绍了AI Agent的五大核心架构层:认知与推理层(思考与决策)、语言与理解层(沟通基础)、自动化与执行层(行动能力)、记忆与知识层(数据存储)和协作与环境层(社会互动)。这些架构共同构成了AI Agent的"大脑"和"四肢",使其能自主思考、规划、行动和协作。掌握这些架构有助于开发者从"会用"AI升级到"会造"AI,构建真正的自主智能系统。

2025-09-05 08:00:00 1505

原创 【收藏学习】RAG技术深度解析:文本嵌入与重排序,大模型应用必备技能

文章深入解析了RAG技术的两大核心技术:文本嵌入和重排序。文本嵌入将文本转化为向量,实现语义理解;重排序优化检索结果,提高相关性。文章详解了它们的原理、算法、应用场景及挑战,展示了这些技术如何提升大模型回答的准确性和实用性,是RAG系统性能的关键所在。

2025-09-05 07:30:00 880

原创 一文掌握RAG文本Chunking:LLM开发者的必学技能,建议收藏学习

文章详细介绍了RAG应用中的文本chunking技术,包括其定义、必要性、多种策略分类及评估方法。实验表明,RecursiveCharacter策略在80%通用场景表现稳定,而LLMChunker和ClusterSemanticChunker在特定场景更优。建议先采用200-400 token无重叠的通用策略,再根据文档类型和需求优化,小Chunk通常能获得更好的精度和效率。

2025-09-04 11:47:04 669

原创 程序员必看:Context Engineering——大模型时代的软件开发新范式(值得收藏)

本文探讨了Context Engineering在大模型开发中的重要性,将其比作LLM操作系统的用户程序开发工程。与早期预测不同,Prompt Engineering不仅未弱化,反而发展为更全面的Context Engineering,包括构建和管理上下文窗口的科学与艺术。文章分析了Context不当处理导致的问题,详细介绍了其内容类型和处理分类,并提出了面向LLM的工程方法论。Context Engineering已成为Software 3.0时代的核心技能,对优化大模型性能和应用开发至关重要。

2025-09-04 11:34:45 1004

原创 干货收藏!Transformer架构详解:从零理解大模型的核心原理

Transformer是谷歌2017年提出的模型,已成为现代大语言模型的基石。它由编码器和解码器组成,核心是自注意力机制和多头注意力,能够高效捕捉长距离依赖。位置编码解决了序列顺序问题,残差连接和层归一化提升了训练稳定性。解码器的掩码多头注意力确保了自回归生成的因果性。这些设计使Transformer能够高效并行处理信息,成为当前大模型时代的技术基础。

2025-09-04 11:22:46 509

原创 【程序员必看】LightRAG实战:从入门到精通,解决RAG‘只见树木不见森林‘的痛点

LightRAG是解决传统RAG局限性的创新开源项目,通过知识图谱构建和双层检索机制,能理解信息间的复杂关系,不仅检索片段还能把握整体脉络。文章详细讲解了其技术原理、搭建方法、应用场景和优化技巧,通过实际案例展示在企业知识管理、法律分析等领域的出色表现。LightRAG显著提高查询准确率,降低Token使用量,为构建需要深度理解和复杂推理的AI应用提供了新思路。

2025-09-03 11:46:25 1074

原创 【收藏必备】三款大模型工具深度对比:n8n、Coze、Dify选型指南

文章通过比喻对比了三款大模型工具:n8n(乐高式自由拼装)、Coze(快餐式快速上手)和Dify(高级厨房需专业技能)。Dify因技术难度和成本高被排除。详细比较了n8n和Coze在业务适用性、学习成本、界面友好度、功能需求、调用成本、插件支持和模型调用方面的差异。结论是:海外业务或复杂需求选n8n,国内简单需求或小白用户选Coze,建议根据个人业务和能力选择合适工具,避免浪费时间。

2025-09-03 11:32:50 561

原创 收藏必学!LangChain大模型应用开发面试指南:从核心概念到RAG实战

本文全面介绍LangChain框架核心概念(Models、Prompts、Indexes、Memory、Chains、Agents)及LCEL优势,深入讲解RAG实现流程与文档切分策略,对比LlamaIndex与LangChain差异,详解Agent执行流程(ReAct框架)和自定义Tool实现方法,分享RAG评估优化策略。内容从基础到实战,适合大模型开发学习与面试准备。

2025-09-03 11:27:26 1084

原创 【干货收藏】AI智能体全解析:大模型进阶必学,提升开发效率的智能系统

AI智能体是超越传统生成式AI的先进系统,能自主推理、规划并执行复杂任务。它由LLM(大脑)、记忆模组、规划模组和工具集成等组件构成,通过协同工作实现目标。与AI助手相比,AI智能体具有更高自主性、学习能力和任务复杂度处理能力。已在工作流优化、数据分析、客户服务、软件开发和供应链管理等领域广泛应用,是AI技术发展的重要方向。

2025-09-02 13:36:21 907

原创 RAG分块艺术:黄金法则与四大主流策略详解,附实战技巧

本文深入解析RAG系统中的分块技术,揭示其作为连接原始文档与语义检索桥梁的核心作用。从语义降噪和模型限制适应两大原理出发,详细阐述200-800 Token的最佳实践区间,对比递归、格式、固定大小和内容感知四大分块策略,并介绍句子窗口检索、父文档检索器等高级技巧。强调分块需根据业务场景实验优化,是提升RAG系统性能的关键环节。

2025-09-02 11:59:21 1248

原创 【值得收藏】手把手教你用PyTorch构建Transformer英汉翻译系统,从训练到推理

文章详细介绍了如何使用PyTorch从零构建简化版的Transformer英汉机器翻译系统。内容包括:构建中英文平行语料和词表、实现位置编码、多头注意力机制和前馈网络,搭建编码器和解码器结构,以及训练和推理过程。文章通过最小样本和最简配置,完整演示了Transformer从数据准备到模型构建,再到生成翻译结果的完整闭环,适合初学者理解Transformer的基本原理和应用。

2025-09-02 11:54:34 928

原创 【干货收藏】智能体工作流全解析:AI Agent的三大核心组件与实战应用

智能体工作流结合AI智能体的推理能力与结构化工作流,实现复杂任务半自主执行。其核心由推理(规划与反思)、工具(扩展实时数据访问)和记忆(经验学习)三大组件构成,通过规划、工具使用和反思三种模式灵活组合。广泛应用于RAG、研究和编码等领域,虽具有高灵活性和复杂任务处理能力,但也面临可靠性和伦理挑战。

2025-09-01 15:17:03 1018

原创 【必藏】A2A协议实战:基于大模型的天气代理系统开发完全指南

本文详细介绍了代理到代理(A2A)协议的核心原理,通过构建一个基于大模型的天气代理系统,展示了A2A协议的发现机制、任务执行和响应处理流程。文章从项目环境搭建到服务器和客户端的实现,完整演示了如何使用Flask、Tavily API和Gemini LLM创建一个符合A2A标准的代理系统。这种标准化通信方式降低了代理生态系统的开发复杂度,使智能体能够像互联网服务一样自由组合。

2025-09-01 15:03:27 602

原创 2025年AI Agent完全指南:智能体时代程序员必学技术与创业机会

AI Agent在2025年迎来爆发,成为科技圈焦点。其三大推动力是模型能力提升(Claude 3.7)、协议打通(MCP)和范式确立(Manus)。创业公司凭借速度优势跑赢大厂,但通用Agent面临模型厂商亲自下场的威胁。未来垂直化发展是出路,聚焦特定领域建立壁垒。AI时代,人类角色将从执行者转向指挥家,领导力和沟通力等软实力价值提升。中国创业者在Agent赛道赢得开局,但前路仍面临挑战。

2025-09-01 14:42:16 1412

原创 AI 大模型核心能力与应用全景:企业如何选择最适合的落地场景?(建议收藏)

前言,从2023年初ChatGPT重磅亮相开始,大模型技术的发展成为了AI领域的焦点,驱动了AI应用的升级和创新。在ToB业务领域,AI大模型技术也在逐步改变企业的业务开展、产品服务、运营管理的传统模式,企业端对大模型的应用也已从初步的技术探索与创新尝试,逐渐步入以实现商业价值为核心的新时代,其中构建商业闭环、验证价值的应用场景是关键,作为相关领域从业者,也要了解AI大模型的核心能力和典型应用领域。结合IDC 2024研究报告的内容和大家简单聊聊!

2025-08-31 08:45:00 1444

原创 大语言模型(LLM)到底是什么?从零理解其核心原理与本质(建议收藏)

本指南介绍了经济学家等社会科学研究者可能会用到的大语言模型知识。本文会覆盖例如模型选择、预处理技术、主题建模和量化分析等方面。并且,为了展示大语言模型在社会科学研究中的具体应用,本文将利用大语言模型的方法,分析美国股价变化的驱动因素。

2025-08-31 08:45:00 1530

原创 程序员必藏:大模型应用评估完全指南——RAG、智能体与对话系统的指标测量与框架选择

文章系统介绍了大语言模型应用的评估方法,包括多轮对话、RAG系统和智能体三类应用的关键评估指标。针对多轮对话,需关注相关性、完整性、知识保留等指标;RAG系统需分别评估检索和生成部分;智能体应用则需额外关注任务完成度和工具正确性。文章比较了RAGAS、DeepEval、OpenAI Evals等评估框架的特点和适用场景,帮助开发者选择适合的评估工具。

2025-08-30 16:28:35 812

原创 RAG系统性能翻倍:文档分块策略详解,一份给工程师的Chunking实战指南

本文深入探讨RAG系统中文档分块的关键作用,详细介绍了基础、结构感知、语义及高级分块策略,提供实战代码示例。提出分层决策框架,从简单基准策略逐步引入复杂方法,强调分块需根据数据特性和业务需求迭代优化,是提升RAG系统性能的必经之路。

2025-08-30 16:21:46 969

原创 RLHF是什么?为什么它能让大模型“更懂你”?小白也能看懂的原理解读

文章主要介绍大模型微调技术系列,重点详解RLHF(基于人类反馈的强化学习)技术。RLHF通过人类反馈和强化学习提升模型对齐性,解决传统微调难以捕捉复杂人类价值的问题。文章阐述了RLHF的核心流程、优势挑战、实现细节和实践建议,帮助读者掌握如何有效设计和应用RLHF,提升模型输出质量和安全性。

2025-08-30 15:56:43 748

原创 【小白必学】LLM大语言模型构建全流程:从入门到实践指南

本文详细介绍大语言模型(LLM)的构建全流程,包括数据准备、注意力机制实现、预训练创建基础模型以及微调适应特定任务。基于Transformer架构,LLM通过预测下一个单词学习语言规律,分词器作为桥梁将文本转化为模型可处理单元。从理论到实践,为读者提供完整的LLM开发指南。

2025-08-29 13:58:13 928

原创 AI Agent实战:提升大模型应用能力——提示链、响应净化与结构化输出技术详解

本文介绍大型语言模型(LLM)应用的三大关键技术:提示链通过分解复杂任务提升准确性和安全性;响应净化确保输出内容安全、符合伦理且适合目标受众;结构化输出将自由文本格式化为预定义结构,便于后续处理。这些技术共同构成基于LLM的工作流(输入→推理→响应→验证→输出),能显著提升AI系统的可靠性、安全性和可操作性,是构建高效LLM应用和AI代理的基础。

2025-08-29 13:47:41 885

原创 【小白必看】AI Agent入门到精通:工作原理、架构设计与开发实践

AI Agent是一种具备自主性、反应性、主动性和社交性的智能系统,其工作循环为感知→思考→行动→反馈。文章详细介绍了AI Agent的核心架构(感知、记忆、推理、行动模块)、关键技术原理(提示工程、链式思维、工具使用)以及开发流程。通过数据分析Agent的实践案例,展示了AI Agent的设计与实现,并探讨了其在客户服务、企业自动化和研发辅助等领域的应用价值。

2025-08-29 13:38:27 1020

原创 收藏必备!从零构建智能RAG系统:LangChain+LangGraph实战指南,小白也能上手的大模型应用开发

本文详细介绍了如何构建生产级检索增强生成(RAG)系统,通过工业设备故障维修手册案例,展示了从数据预处理、多策略分块到智能体(Agent)驱动的RAG流程全链路技术。文章使用LangChain、LangGraph和RAGAS等工具,实现了规划、执行、反思和工具调用能力,并通过案例测试和RAGAS评估验证了系统性能,为开发者提供了从原型到生产级的完整实践指南。

2025-08-28 14:57:06 766

原创 收藏必备!深入理解RAG中的文本分块:从入门到实践,提升大模型检索与生成质量

本文详细解析了RAG应用中文本分块的多维价值:提升检索相关性、优化效率、保障生成质量、适配长文档并平衡信息完整性。介绍了Java中TokenTextSplitter和SentenceSplitter两种实现方法,并对比了固定长度、递归、按结构和按标点等分块策略的优缺点,为不同场景提供实用指导,帮助开发者构建更高效的RAG系统。

2025-08-28 14:50:43 1114

原创 AI大模型技术趋势在哪?主流白皮书核心内容深度解读(附下载)

移远通信与智次方研究院联合发布《AI大模型技术方案白皮书》,全面论述AI大模型技术本质、产业态势、应用场景及实践案例。白皮书提出"智能连接体"核心架构,通过端侧+云侧协同满足多场景需求,详细解析AI大模型分类与核心能力,展示在具身智能、智慧交通等领域的应用,并展望具身智能协同进化、统一多模态大模型等未来趋势。

2025-08-28 11:23:27 953

原创 LangGraph 快速入门指南:概念 + 实战一步到位!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

2025-08-27 11:54:42 786

原创 为什么说RAG 2.0正在重塑知识类 AI 的未来?

但今天,我们要聊的不是传统意义上的 RAG,而是它的升级版——RAG 2.0。它的目标是解决传统 RAG“东拼西凑、各模块之间不协调”的问题,让检索器(Retriever)与生成器(Generator)真正融为一体,形成一个可训练、可优化的整体系统。

2025-08-27 11:21:11 969

原创 【AI面试必看】大模型岗位高频考点:机器学习十大必考题解析(建议收藏)

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

2025-08-27 11:03:09 701

原创 为什么大模型时代还要学 BERT?2025 年 NLP 基石的再认识

BERT,全称Bidirectional Encoder Representations from Transformers(基于Transformer的双向编码器表示) ,本质上是一款“先学通用语言、再做具体任务”的预训练语言模型。

2025-08-26 14:32:13 1145

原创 别再只靠 Embedding!构建高效文档 RAG 的完整路径(LangExtract + Milvus 教程)

这个方案的优势在于,LangExtract擅长从非结构化文档中提取结构化信息,Milvus擅长做语义相似度检索, 双剑合璧,更适合法律、医疗、教育、法律等对内容准确度有更高要求的AI落地场景。

2025-08-26 14:25:04 1057

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除