自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(574)
  • 收藏
  • 关注

原创 20个AI关键术语详解:从入门到精通的必备知识

总而言之,关于AI的学习,对于大多人来讲,最重要的一点,就是要用起来,多用,不断地用,持续地用。也许你的问题,不一定都能完全解决,但是你要相信AI的学习能力和进化速度,一定会比我们进步更快。

2025-08-13 15:53:40 675

原创 LightRAG知识图谱框架详解:从入门到实践

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

2025-08-13 15:45:12 566

原创 AI智能体记忆系统架构:从设计原理到落地实现

想象一下,如果你有一个朋友,他忘记了你曾经说过的所有事情。每一次对话都从零开始。没有记忆,没有上下文,没有进展。这会让人感到尴尬、疲惫和不亲切。不幸的是,这正是今天大多数 AI 智能体系统的行为方式。它们确实聪明,但缺少了一样至关重要的东西:记忆。

2025-08-13 15:30:34 431

原创 零成本AI开发:各大平台免费大模型API资源整合

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

2025-08-12 11:59:29 690

原创 【大模型实战】Unsloth微调Qwen3:高效训练的详细步骤解析

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

2025-08-12 11:58:37 616

原创 从传统产品经理到AI产品经理:职业发展的新赛道与新机会!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

2025-08-12 11:58:01 1254

原创 从理论到实践:基于上下文工程优化LangChain智能体万字解析

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

2025-08-12 11:57:24 597

原创 【架构师必读】AI智能体工作流设计:5种模式选择与应用

本文对AI 智能体的工作流(Workflow)的5种架构设计模式、何时使用何种流程以及对 AI 智能架构未来意味着什么进行一个实用的分解。

2025-08-11 14:42:49 527

原创 从开发到部署:LangGraph实现高可用AI Agents完整流程

人工智能(AI)已经不再只是个时髦词,它正在改变我们解决实际问题的方式。从聊天机器人到自动化工作流,AI 智能体是这些创新的核心。但要打造一个可靠、可扩展、随时能上线的 AI 智能体可不是件容易事。

2025-08-11 14:35:26 933

原创 【技术干货】AI智能体记忆策略:8种常见方法与实现详解

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

2025-08-11 11:48:25 814

原创 AI模型微调入门必读:一文搞懂核心术语

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

2025-08-10 09:45:00 814

原创 手把手带你搭建AI Agent:零基础入门到实战部署全攻略

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

2025-08-09 09:45:00 709

原创 手把手教你从0搭建商用Agent:为什么Dify是最优选择?

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

2025-08-08 10:57:06 564

原创 手把手拆解:4大场景 AI Agent 的执行流程与核心模块设计

这篇文章,我们将深入对比四类常见的企业级场景AI Agent:内容审核、ChatBI、智能客服、报告生成,不仅告诉你它们的流程,还会通过真实业务视角揭示它们背后的逻辑与差异,帮助你一眼看清,选型不迷路。

2025-08-07 10:53:09 980

原创 企业级智能体(Agent)开发的核心难题与落地解决方案

智能体开发是目前大模型应用的主流方向之一,但由于大模型的不稳定性导致智能体开发困难重重,特别是构建能够稳定运行的智能体,更是难上加难。

2025-08-07 10:32:48 979

原创 【建议收藏】一文告诉你如何构建强大的AI智能体,从从设定目标到使用 MLOps 进行部署!

人工智能智能体的时代已经到来。从个人助理到自主业务副驾驶,人工智能智能体正在重塑我们与软件交互的方式。但是如何真正构建一个智能体呢?

2025-08-06 14:03:40 1088

原创 【建议收藏】谷歌提示词设计方法论全解析:大模型时代的 Prompt Engineering 最佳实践

前言:大语言模型(LLM)的兴起,让机器与人类的交流达到了前所未有的深度。然而,想要让这些智能助手真正理解我们的意图,并产出我们期待的精准、有价值的成果,需要掌握一门精妙的艺术与科学——提示词工程。它不再是数据科学家或机器学习工程师的专属领域,而是每一位与AI对话的普通人都能掌握的关键技能。

2025-08-06 11:43:56 722

原创 一文彻底搞懂DeepSieve让RAG系统真正“学会思考”!

现在的RAG(检索增强生成)系统。您给它一个简单直接的问题,它能答得头头是道;可一旦问题需要稍微拐个弯,或者知识源一复杂,它就立刻“拉胯”,要么返回一堆不相干的东西,要么干脆就开始一本正经地胡说八道。今天来自罗格斯大学的研究者带来了DeepSieve,这是一个专为处理异构知识源的RAG框架,让RAG系统真正“学会思考”。

2025-08-06 11:35:18 863

原创 测试工程师必看|为何多模态RAG正在改变AI测试的未来?(对比传统RAG)

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

2025-08-05 13:37:46 1118

原创 人工智能、机器学习、深度学习:一文搞懂三者区别与层级关系

现在AI,大模型等各种时髦新潮词汇层出不穷,说起来都是与人工智能相关的,那人工智能,机器学习,深度学习到底具体是什么?它们之间有什么联系与区别?

2025-08-05 11:17:51 1000

原创 大模型“瘦身”之旅——零基础看懂模型量化

于是,一个“减肥塑形”的技术走红——大模型量化(Model Quantization)。它的目标很明确:让大模型变小、变快、变便宜,还尽量不掉智商。

2025-08-05 11:11:03 713

原创 【建议收藏】MaxKB vs FastGPT 深度对比:谁更适合你的RAG知识库系统?

RAG技术是当前阶段做内部知识库或者智能客服的不二之选。然而目前市面上可用作RAG的开源软件实在是太多了,Coze、Dify、FastGPT、RAGFlow还有MaxKB,当然还有其它,我就不再一一列举了。

2025-08-04 14:35:07 803

原创 【建议收藏】AI Agent开发难题:如何应对长上下文?“滚动摘要”实战解决方案详解

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。

2025-08-04 14:14:03 564

原创 大模型查不到资料?先搞懂RAG中的文档向量化流程(含分块策略与Embedding选型)

在 RAG 架构中,文档扮演着“外部大脑”或“权威知识库”的角色。它的核心使命是为 LLM 提供一个事实的基石(grounding),当模型需要回答问题时,它不再仅仅依赖于自己内部模糊的、可能过时的记忆,而是可以查阅这些外部文档来获取最相关、最准确的信息。

2025-08-04 13:38:24 809

原创 【概念扫盲】AI Agent与Agentic AI到底有何不同?一文详解

本文探讨了AI Agent与Agentic AI的区别与联系。Agentic AI是由吴恩达提出的概念,指具备自主思考和解决问题能力的未来人工智能形态,强调系统性、适应性和目标导向性;而AI Agent是当前基于大模型的具体实现方案,专注于完成特定任务。二者的核心区别在于:Agentic AI是目标导向的能力框架,AI Agent是任务驱动的具体实现。文章指出,虽然当前AI技术仍处于"伪智能"阶段,但Agentic AI为人工智能发展提供了方向性思考,而AI Agent则展现了现阶段可行

2025-07-31 15:00:00 906

原创 AI Agent架构全解析:从基础概念到系统设计的完整指南

本文系统介绍了AI Agent(人工智能代理)的概念、架构和应用。AI Agent是以大型语言模型为核心、能感知环境并自主决策的智能系统,广泛应用于客服、医疗、金融交易等领域。其架构采用PPA(感知-规划-行动)模型,通过持续的环境交互实现智能行为,其中记忆机制(感觉记忆、短期记忆等)对经验积累和决策优化至关重要。文章还对比了AI Agent与其他技术,列举了相关开发框架,并展望了其未来发展前景。AI Agent正凭借其高效性、适应性成为现代社会的关键技术之一。

2025-07-31 14:45:00 838

原创 【技术干货】大模型量化学习指南:Quantization原理与应用详解

大型语言模型(LLM)量化技术通过将高精度浮点参数转换为低精度整数参数,有效降低模型存储和计算需求。该技术主要包括参数压缩和计算加速两方面,能够节省显存、加速推理并降低通讯量。研究表明,大模型(70B+)采用4bit量化对性能影响较小,而小模型则更适合8bit量化。量化技术适用于移动设备、边缘计算和云端部署等场景,在保证模型性能的同时显著提升运行效率。不同数据格式(FP32、FP16、BF16等)的选择需要平衡精度与计算效率,其中TF32和BF16等新型格式在深度学习中展现出优势。

2025-07-30 15:05:46 772

原创 AI开发者必知:LLM框架、Agent应用、Workflow架构概念与实践

摘要: 本文深入解析AI领域的三大关键技术:LLM框架(大语言模型)、Agent应用和Workflow架构。通过技术原理剖析、代码示例和操作指南,系统介绍LLM框架的自然语言处理能力、Agent的智能决策特性以及Workflow的高效协同机制。文章旨在为开发者提供实用技术参考,涵盖核心概念、应用场景及实现方法,助力读者掌握AI前沿技术。关键词:人工智能、LLM、智能代理、工作流、技术创新。

2025-07-30 14:59:51 772

原创 qwen2.5大模型微调实战教程:详细步骤+代码示例完整指南

摘要 本文介绍了大模型微调(Fine-tuning)的基础概念和常见方法。微调是指在预训练模型基础上,使用特定数据集进行进一步训练,使模型适应特定任务或领域。其优势包括提升任务性能、增强领域适应性、解决数据稀缺问题、防止过拟合及降低成本。常见微调方法包括SFT(有监督微调)、LoRA、QLoRA等,其中SFT通过标记数据调整模型权重,优化任务表现。微调流程包括数据准备、执行训练、迭代调整和模型更新。文章还提及了实操微调Qwen2.5的案例,展示了微调的实际应用价值。

2025-07-29 15:30:00 939

原创 LLM部署实战:基于Qwen2+FastAPI的并发控制与流式响应实现

本文提出了一种基于FastAPI的大型语言模型(LLM)服务器部署方案,重点解决并发控制和流式响应两大工程实践问题。通过asyncio.Queue实现请求队列管理,当请求超过阈值(10个)时直接拒绝新请求,防止服务器过载;采用ThreadPoolExecutor线程池执行器将同步推理任务转为异步执行,避免阻塞事件循环。同时,利用TextIteratorStreamer实现边推理边输出的流式响应,显著提升用户体验。实验表明,该方法能有效支持并发推理任务,GPU显存占用随并发量动态调整并回落。该方案为单机部署L

2025-07-29 15:15:00 884

原创 10分钟搭建合同审查AI智能体!Dify+Qwen3保姆级教程,小白轻松上手

本文详细介绍了如何从零开始部署Dify AI框架并构建合同审查智能体。教程分为五个部分:首先说明Dify在数据安全性和本地化部署方面的优势;接着逐步指导安装Docker等必备工具,完成Dify的本地部署;然后介绍通过Ollama集成Qwen3模型的方法,针对不同硬件配置推荐适配模型;最后演示10分钟快速创建合同审查智能体的流程。文章配有详细操作截图和命令示例,即使非技术人员也能跟随完成。文末还提供了资料领取方式,帮助读者快速掌握这一能显著提升合同处理效率的AI解决方案。

2025-07-28 14:46:00 1046 1

原创 【技术干货】Qwen3优化实践:训练与推理性能提升详细教程

Qwen3模型系列带来多项技术突破,包括两大MoE架构(235B总参/22B激活参数和30B总参/3B激活参数),支持128K长上下文和119种语言。模型提供灵活的思考模式切换功能,基础模型性能显著提升,如Qwen3-1.7B性能对标前代Qwen2.5-3B。创新性地采用混合奖励机制,结合规则奖励、基于参考答案的模型奖励和无参考答案的偏好学习,有效提升模型响应质量。系列涵盖从0.6B到235B的丰富参数规模,满足从移动端到云端的全场景部署需求,特别适合对话系统、语音助手等AI应用开发。

2025-07-28 14:44:13 961

原创 Qwen2-VL性能提升秘籍:多模态微调实战教程(含完整代码)

本文介绍了基于Qwen2-VL-2B-Instruct模型在COCO2014图像描述数据集上的Lora微调训练方法。通过使用transformers、peft等框架,结合SwanLab工具进行训练监控和效果评估。文章详细说明了环境配置、数据集准备(包含500张图像预处理为特定JSON格式)、模型加载与微调过程,并展示了训练结果。项目提供了完整的代码仓库和在线训练可视化示例,帮助研究者实现多模态图像描述任务的模型优化。关键步骤包括数据格式转换、SwanLab集成、Lora参数配置等,为视觉语言模型的微调提供了

2025-07-26 14:15:00 949

原创 Qwen3开源大模型实战:从技术解析到本地部署的完整路径

阿里云发布Qwen3系列开源大语言模型,包含6个密集模型(0.6B-32B)和2个MoE模型(30B/235B),采用Apache 2.0许可。主要创新包括:1)混合推理模式,用户可手动切换"思考/非思考"模式提升任务适应性;2)推理能力显著提升,4B小模型性能媲美前代72B模型;3)支持128K长文本处理和多达119种语言;4)训练数据达36万亿token。提供在线API、Python调用及本地部署方案(如ollama),适用于各类AI应用场景。

2025-07-26 13:45:00 565

原创 FastMCP实战指南:3分钟部署AI服务器,开发效率飙升秘诀

摘要: FastMCP是一款专为构建MCP服务器设计的开源Python库,通过简化协议实现和服务器管理,提供高效易用的开发接口。其核心优势包括:1)利用装饰器快速定义工具与资源,显著减少代码量;2)完全遵循Pythonic风格,降低学习成本;3)完整实现MCP协议,支持从简单工具到企业级系统的开发。典型应用场景涵盖智能问答系统、业务自动化等领域,仅需少量代码即可完成服务器搭建,极大提升了AI与外部资源集成的开发效率。

2025-07-25 11:15:17 1011

原创 【RAG检索增强生成】RAG+Vanna组合拳:智能SQL生成让数据库交互更高效

Vanna是一个基于RAG技术的开源Text2SQL工具,能够将自然语言查询自动转换为SQL语句并执行。它结合了检索增强生成技术,支持多种数据库和大语言模型,简化了非技术人员的数据查询流程。本文介绍了Vanna的工作原理、安装配置步骤,并通过示例展示了其执行SQL查询和生成可视化图表的能力。Vanna显著提升了数据库查询的效率和易用性,为数据分析提供了智能化的解决方案。

2025-07-24 10:34:56 863

原创 手把手实战RAG:LangChain智能检索生成系统构建详解

摘要:本文探讨了如何结合大型语言模型(LLM)的常识性知识与专有数据,重点介绍了检索增强生成(RAG)技术。RAG通过检索模型从外部知识源获取信息,再结合生成模型产生更准确的回答,避免了微调的高成本问题。文章详细阐述了RAG的工作流程(检索、增强、生成),并通过LangChain、OpenAI和Weaviate数据库的实例演示了RAG系统的实现步骤,包括数据加载、分块处理、向量嵌入及查询增强生成。该技术能有效提升LLM在专有领域信息处理中的准确性。

2025-07-23 13:55:24 681

原创 RAG基础理论详解:第一讲带你彻底理解检索增强生成原理

本文系统介绍了大语言模型(LLM)的基本概念、核心能力与结构原理,并深入分析了其局限性和面临的挑战。文章着重阐述了检索增强生成(RAG)技术如何通过结合外部知识库来弥补LLM的知识局限,包括减少幻觉问题、提升回答准确性等优势。通过形象的"学生与神奇书本"比喻,生动说明了LLM与RAG的协同关系:LLM作为基础提供语言理解和生成能力,RAG则提供动态知识支持,二者结合可显著提升模型在专业领域和实时信息处理中的表现。文章还简要概述了后续系列教程的内容框架,为读者提供了清晰的学习路径。

2025-07-23 11:41:22 656

原创 一文掌握DeepSeek-R1部署:本地化配置要求与环境搭建详解

DeepSeek-R1本地部署硬件指南 本文介绍了不同规模DeepSeek-R1模型的本地部署硬件需求及适用场景: 1.5B:低配设备可用(4核CPU/8GB内存),适合轻量级任务如聊天机器人。 7B/8B:需中端配置(8核CPU/16GB内存,推荐RTX 3070),适用于文本摘要、翻译等任务。 14B:要求较高(32GB内存/16GB显存),适合企业级复杂任务如合同分析。 32B/70B:需高端硬件(多卡并行/服务器级CPU),面向专业领域如医疗咨询或科研。 用户可根据具体需求选择合适版本,平衡性能与资

2025-07-22 14:50:20 1258

原创 【收藏必备】AI大模型学习全攻略:理论基础与实践应用双路径

本文介绍了大模型的基本概念及其应用前景。大模型是具备数千亿参数的大型预训练AI系统,能够通过海量数据学习语言理解、文本生成等能力,如GPT-3等典型代表。学习大模型具有重要意义:既是把握AI技术前沿的关键,又能提升就业竞争力、创新能力和问题解决能力。大模型已广泛应用于自然语言处理(如智能客服)、机器翻译、内容生成等领域,并正在医疗、教育等行业产生深远影响。掌握大模型技术不仅有助于个人职业发展,也是参与社会数字化转型的重要途径。

2025-07-22 14:27:18 725

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除