在AIGC的新纪元中,模型已晋升为与算力并驾齐驱的生产力核心要素。想象一下,手中握有量身定做的庞大模型或LoRA模型,便能轻易锁定心仪的艺术风格、画面构成(无论是人物的神韵还是景物的独特),随后借助文成图、图生图,实现创意的批量复制与快速迭代,生产力因此飞跃。随着这一趋势的兴起,模型训练师或称为模型设计专家的职业角色应运而生,相关岗位的招聘需求也日益增长,为行业注入了新的活力。
谈及LoRA模型的训练,B站平台上已汇聚众多高手,他们的教学视频详尽且深入浅出,为学习者铺设了坚实的基石。本文旨在分享这一过程中的个人实践心得,虽主要遵循既有路径,但在某些关键步骤上,我融入了自己的创新策略,并诚实地记录了实践中遇到的挑战与陷阱,期待能与同行者相互启发,共同进步。
#01
/流程
今天的目标是训练一个图标风格的LoRA。我把训练的过程和用到的工具,列了张流程图。
在整合过程中,尤其注重了打标处理这一环节。鉴于WD 1.4标签器在某些情况下反推标签的质量不尽如人意,我采取了创新策略,利用ComfyUI搭了一个高效的工作流程。这一流程巧妙地集成了在线的语言大模型,实现了更加精准的标签标注,显著提升了打标的准确性和效率。
#02
/图片处理
用ComfyUI的工作流,这次比较简单,只是缩放了一下尺寸,如果需要检测人脸,然后裁剪,也是可以搭建工作流方式实现的。
#03
/打标
使用了在线的大模型进行批量打标和保存处理,提示词会更精准,当然也更费钱~
第一步是先让视觉模型识别出画面。
打标的第二步,是根据识别的内容,总结为标签tag。
把触发词添加到tag文本中,然后保存,处理后,文件夹应该是这样的。
注意:npz是训练是生成的,忽略哈~
文件结构
处理后的素材,文件结构是这样的:
lora-scripts-v1.8.5
-- train
-- gold3dicon
-- 8_icons
注意最底层的目录8_为标准前缀,表示文件夹内的素材,每张图训练8次,你也可以调高这个数字,例如10,这样会增加整体训练步数。
关于训练步数,公式为:
【每张图训练次数x最大训练epoch(轮数)x 图片张数】/ 批量大小=总训练步数
#04
/开始训练
使用秋叶的web训练工具
直接使用专家模式,新手跟专家其实差别不大,专家模式有些参数,新手模式没有。
训练种类
SD1.5模型选sd-lora。SDXL模型选sdxl-lora。
训练底膜
选择一个底模,这里训练SDXL LoRA,直接选择SDXL原生底膜。
VAE
这里要重点提一下,踩了一些坑,这里写的是可选,事实上对于某些底模,这里需要选一个适配的vae,而且是fp16的才行,不然会报错。
数据集
选择上面输出的目录即可
resolution
根据素材选择相应的尺寸
最后就是训练过程了,漫长的等待,显卡在燃烧~
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
若有侵权,请联系删除