2024年HarmonyOS鸿蒙最全【Python排序算法系列】—— 希尔排序_python希尔排序(1),如何搞定面试

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!


img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

总结起来,希尔排序是一种高效的排序算法,通过缩小增量和分组插入排序的方式,大幅度减少了逆序对的数量,从而提高了排序效率。虽然希尔排序存在一定的非稳定性,但在实际应用中并不影响排序结果的正确性。希尔排序在大多数情况下都能够比较好地工作,并且****适用于各种规模的数据集。

理解

希尔排序是插入排序的优化,他把整个列表按照定义的gap(为步长【也叫增量】)切割【隔着gap切割而非连续切割】成多个子列表,然后对子列表进行排序,排完序以后的整个列表,若还是存在无序,我们可以将增量递减,继续进行插入排序,直到增量为1,当增量为1的时候整个列表直接进行插入排序,此时,已经在前面排好的基础上进一步进行插排,因此希尔排序在最后进行插排的时候比整个无序表进行插排的速度快很多。

子列表的个数 = 步长

过程演示

Step1:

希尔排序第一步:这里我们选择二分法, 按照步长 gap = len (alist) / /  2 进行列表的切割。

原来的无序表的长度是9,所以它的步长gap = 9 / / 2 = 4,如上图切割成4个子列表。

【注意】****:实际上他不会像图上一样分开成四个,而是按照原来的进行切分,只是为了更好的理解,我们才分开画的。


Step2:

第二轮,继续按照步长 gap = len (alist) / /  2 进行列表的切割。

原来的无序表个数是4,所以它的步长gap = 4 / / 2 = 2,如下图切割成2个子列表。


Step3:

第三轮,继续按照步长 gap = len (alist) / /  2 进行列表的切割。

原来的无序表的个数是2,所以它的步长gap = 2 / / 2 = 1,如下图切割成1个子列表。


实现代码:

#切割列表,然后利用for循环进行插排
def shell_sort(alist):
    sublistcount = len(alist) // 2 #切割子列表的步长
    while sublistcount > 0:  #只要还可以切割

        # 通过循环遍历每个字列表
        for i in range(sublistcount):
            insert_sort(alist, i , sublistcount) #对每一个子列表进行插排

        sublistcount = sublistcount // 2 #改变步长的长度
    return alist

# 定义插排的函数
def insert_sort(alist, start, gap):
    for i in range(start +gap, len(alist), gap):
        currentvalue = alist[i] #记录当前循环列表里的值
        position = i #记录当前位置

        while position >= gap and alist[position - gap] > currentvalue:
            alist[position] = alist[position - gap] #整体后移
            position = position - gap # 记录当前位置

        alist[position] = currentvalue#当前位置等于要插入的那个位置

li = [54,26,93,17,77,31,44,55,20]
print(shell_sort(li))



Self Check

我的解题思路:

根据希尔排序的特点,根据gap先进行分组然后进行跳跃切割。

题目中的gap = 3,所以我们首先可以知道要分三组:

他们的下标和对应的分组元素如下图所示

然后每组按照插入排序的方法进行排序

最后排完的结果是: 5 , 3, 8 , 7 , 16, 19 , 9 , 17, 20, 12。


📝总结:

粗看上去,谢尔排序以插入排序为基础可能并不会比插入排序好,但由于每趟都使得列表更加接近有序,这个过程会减少很多原先需要的“无效”比对

对谢尔排序的详尽分析比较复杂,大致说是介于0(n)和0(n²)之间
如果将间隔保持在2^(k) - 1(1、3、5、7、15、31等等),谢尔排序的时间复杂度约为0 ( n^(3/2))

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!


img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!**

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值