2024年鸿蒙最新04 数据操作 + 数据预处理【动手学深度学习v2】_e+00深度学习(1),学生会面试题100题

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 每个元素的值,例如全是0,或者随机数

在这里插入图片描述

访问元素

在这里插入图片描述

P2 数据操作实现

数据操作

首先,我们导入 torch。请注意,虽然它被称为PyTorch,但我们应该导入 torch 而不是 pytorch

import torch

张量表示由一个数值组成的数组,这个数组可能有多个维度

x = torch.arange(12)
x

tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

可以通过张量的 shape 属性来访问张量的形状 和张量中元素的总数

x.shape

torch.Size([12])

x.numel()

12

要改变一个张量的形状而不改变元素数量和元素值,可以调用 reshape 函数

X = x.reshape(3, 4)
X

使用全0、全1、其他常量或者从特定分布中随机采样的数字

torch.zeros((2, 3, 4))

tensor([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])

torch.ones((2, 3, 4))

tensor([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])

torch.randn(3, 4)

tensor([[ 0.2104, 1.4439, -1.3455, -0.8273],
[ 0.8009, 0.3585, -0.2690, 1.6183],
[-0.4611, 1.5744, -0.4882, -0.5317]])

通过提供包含数值的 Python 列表(或嵌套列表)来为所需张量中的每个元素赋予确定值

torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])

tensor([[2, 1, 4, 3],
[1, 2, 3, 4],
[4, 3, 2, 1]])

torch.tensor([[[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]])

tensor([[[2, 1, 4, 3],
[1, 2, 3, 4],
[4, 3, 2, 1]]])

torch.tensor([[[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]]).shape

torch.Size([1, 3, 4])

常见的标准算术运算符(+-*/**)都可以被升级为按元素运算

x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x**y

(tensor([ 3., 4., 6., 10.]),
tensor([-1., 0., 2., 6.]),
tensor([ 2., 4., 8., 16.]),
tensor([0.5000, 1.0000, 2.0000, 4.0000]),
tensor([ 1., 4., 16., 64.]))

按元素方式应用更多的计算

torch.exp(x)

tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])

我们也可以把多个张量 连结(concatenate) 在一起

X = torch.arange(12, dtype=torch.float32).reshape((3, 4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)

(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 2., 1., 4., 3.],
[ 1., 2., 3., 4.],
[ 4., 3., 2., 1.]]),
tensor([[ 0., 1., 2., 3., 2., 1., 4., 3.],
[ 4., 5., 6., 7., 1., 2., 3., 4.],
[ 8., 9., 10., 11., 4., 3., 2., 1.]]))

通过 逻辑运算符 构建二元张量

X == Y

tensor([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])

对张量中的所有元素进行求和会产生一个只有一个元素的张量

X.sum()

tensor(66.)

即使形状不同,我们仍然可以通过调用 广播机制 (broadcasting mechanism) 来执行按元素操作

a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b

(tensor([[0],
[1],
[2]]),
tensor([[0, 1]]))

a + b

tensor([[0, 1],
[1, 2],
[2, 3]])

可以用 [-1] 选择最后一个元素,可以用 [1:3] 选择第二个和第三个元素

X[-1], X[1:3]

(tensor([ 8., 9., 10., 11.]),
tensor([[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]))

除读取外,我们还可以通过指定索引来将元素写入矩阵

X[1, 2] = 9
X

tensor([[ 0., 1., 2., 3.],
[ 4., 5., 9., 7.],
[ 8., 9., 10., 11.]])

为多个元素赋值相同的值,我们只需要索引所有元素,然后为它们赋值

X[0:2, :] = 12
X

tensor([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[ 8., 9., 10., 11.]])

运行一些操作可能会导致为新结果分配内存

before = id(Y)
Y = Y + X
id(Y) == before

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!


img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

😕/img-blog.csdnimg.cn/direct/743b668910224b259a5ffe804fa6d0db.png)
[外链图片转存中…(img-Xx0IGOty-1715274114265)]
[外链图片转存中…(img-mSxo6tRm-1715274114265)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值