网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 每个元素的值,例如全是0,或者随机数
访问元素
P2 数据操作实现
数据操作
首先,我们导入 torch
。请注意,虽然它被称为PyTorch,但我们应该导入 torch
而不是 pytorch
import torch
张量表示由一个数值组成的数组,这个数组可能有多个维度
x = torch.arange(12)
x
tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
可以通过张量的 shape
属性来访问张量的形状 和张量中元素的总数
x.shape
torch.Size([12])
x.numel()
12
要改变一个张量的形状而不改变元素数量和元素值,可以调用 reshape
函数
X = x.reshape(3, 4)
X
使用全0、全1、其他常量或者从特定分布中随机采样的数字
torch.zeros((2, 3, 4))
tensor([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
torch.ones((2, 3, 4))
tensor([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
torch.randn(3, 4)
tensor([[ 0.2104, 1.4439, -1.3455, -0.8273],
[ 0.8009, 0.3585, -0.2690, 1.6183],
[-0.4611, 1.5744, -0.4882, -0.5317]])
通过提供包含数值的 Python 列表(或嵌套列表)来为所需张量中的每个元素赋予确定值
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tensor([[2, 1, 4, 3],
[1, 2, 3, 4],
[4, 3, 2, 1]])
torch.tensor([[[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]])
tensor([[[2, 1, 4, 3],
[1, 2, 3, 4],
[4, 3, 2, 1]]])
torch.tensor([[[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]]).shape
torch.Size([1, 3, 4])
常见的标准算术运算符(+
、-
、*
、/
和 **
)都可以被升级为按元素运算
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x**y
(tensor([ 3., 4., 6., 10.]),
tensor([-1., 0., 2., 6.]),
tensor([ 2., 4., 8., 16.]),
tensor([0.5000, 1.0000, 2.0000, 4.0000]),
tensor([ 1., 4., 16., 64.]))
按元素方式应用更多的计算
torch.exp(x)
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])
我们也可以把多个张量 连结(concatenate) 在一起
X = torch.arange(12, dtype=torch.float32).reshape((3, 4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0), torch.cat((X, Y), dim=1)
(tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 2., 1., 4., 3.],
[ 1., 2., 3., 4.],
[ 4., 3., 2., 1.]]),
tensor([[ 0., 1., 2., 3., 2., 1., 4., 3.],
[ 4., 5., 6., 7., 1., 2., 3., 4.],
[ 8., 9., 10., 11., 4., 3., 2., 1.]]))
通过 逻辑运算符 构建二元张量
X == Y
tensor([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])
对张量中的所有元素进行求和会产生一个只有一个元素的张量
X.sum()
tensor(66.)
即使形状不同,我们仍然可以通过调用 广播机制 (broadcasting mechanism) 来执行按元素操作
a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
(tensor([[0],
[1],
[2]]),
tensor([[0, 1]]))
a + b
tensor([[0, 1],
[1, 2],
[2, 3]])
可以用 [-1]
选择最后一个元素,可以用 [1:3]
选择第二个和第三个元素
X[-1], X[1:3]
(tensor([ 8., 9., 10., 11.]),
tensor([[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]))
除读取外,我们还可以通过指定索引来将元素写入矩阵
X[1, 2] = 9
X
tensor([[ 0., 1., 2., 3.],
[ 4., 5., 9., 7.],
[ 8., 9., 10., 11.]])
为多个元素赋值相同的值,我们只需要索引所有元素,然后为它们赋值
X[0:2, :] = 12
X
tensor([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[ 8., 9., 10., 11.]])
运行一些操作可能会导致为新结果分配内存
before = id(Y)
Y = Y + X
id(Y) == before
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
😕/img-blog.csdnimg.cn/direct/743b668910224b259a5ffe804fa6d0db.png)
[外链图片转存中…(img-Xx0IGOty-1715274114265)]
[外链图片转存中…(img-mSxo6tRm-1715274114265)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新