既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
if (t) C.push\_back(t);
return C;
}
int main()
{
string a, b;
vector A, B;
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i – ) A.push_back(a[i] - ‘0’);
for (int i = b.size() - 1; i >= 0; i – ) B.push_back(b[i] - ‘0’);
auto C = add(A, B);
// 整个过程都是逆序存储的,因此最后输出时也需要倒序输出。
for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];
cout << endl;
return 0;
}
模板说明
该模板采用了递归调用
vector add(vector &A, vector &B)
{
if (A.size() < B.size()) return add(B, A);
vector<int> C;
int t = 0;//进位
for (int i = 0; i < A.size(); i ++ )
{
t += A[i];
if (i < B.size()) t += B[i];
C.push\_back(t % 10);
t /= 10;
}
//最后看最高位有没有1,若是1的话就压入
if (t) C.push\_back(t);
return C;
}
此模板也可以换种写法
vector add(vector &A, vector &B)
{
vector<int> C;
int t = 0;//进位
for (int i = 0; i < A.size() || i < B.size(); i ++ )
{
if (i < A.size()) t += A[i];
if (i < B.size()) t += B[i];
C.push\_back(t % 10);
t /= 10;
}
//最后看最高位有没有1,若是1的话就压入
if (t) C.push\_back(t);
return C;
}
### 高精度减法
整数的存储同上
#### 计算过程
这里以下式为例
![image-20220911132646580](https://img-blog.csdnimg.cn/img_convert/6fefa92a05bdefd2e502ddb2146ddf42.png)
再次把它抽象一下,形成一下形式
![image-20220911133800828](https://img-blog.csdnimg.cn/img_convert/d96c3dc31ee216926a62061cf066eb50.png)
由此我们可以列出以下式子
首先判断A 与 B的关系,如果A 大于B,则正常加减,否则就计算其差的负数。
![image-20220911134113852](https://img-blog.csdnimg.cn/img_convert/ee38de7453b9feaa453138a1f1867c42.png)
然后分别判断每一位的大小,并且计算是否需要进位。(减去下一位的借位,没借位则t是0,有借位则t是1)
如果是大于0的话,就直接减,如果是小于0的话,就借一位再减。
![image-20220911134506979](https://img-blog.csdnimg.cn/img_convert/99354298a011300c86952ca980198339.png)
#### 例题:高精度减法
给定两个正整数(不含前导 0),计算它们的差,计算结果可能为负数。
**输入格式**
共两行,每行包含一个整数。
**输出格式**
共一行,包含所求的差。
**数据范围**
1≤整数长度≤
1
0
5
10^5
105
**输入样例:**
32
11
**输出样例:**
21
#### 算法模板
#include
#include
using namespace std;
//判断是否有A ≥ B
bool cmp(vector &A, vector &B)
{
//首先判断两个数的位数大小,设置return A > B
if (A.size() != B.size()) return A.size() > B.size();
// 位数相同,从最高位开始比较,设置return A > B
for (int i = A.size() - 1; i >= 0; i – )
if (A[i] != B[i])
return A[i] > B[i];
return true;
}
vector sub(vector &A, vector &B)
{
vector C;
for (int i = 0, t = 0; i < A.size(); i ++ )
{
// 倒序存储,因此实际上是从低位逐渐向高位遍历。
t = A[i] - t;
// 首先要判断以下B[i]是否存在
if (i < B.size()) t -= B[i];
// 本位,这里的(t + 10) % 10,如果t是0-9,则会抵消,如果t是小于0,则相当于是 +10 借位。
C.push_back((t + 10) % 10);
// t小于0,表示需要借位,因此标记为1,这样在传递到下一次循环(即前一位时会自动减1(减去借位))
if (t < 0) t = 1;
else t = 0;
}
//删除前导0
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a, b;
vector A, B;
cin >> a >> b;
for (int i = a.size() - 1; i >= 0; i – ) A.push_back(a[i] - ‘0’);
for (int i = b.size() - 1; i >= 0; i – ) B.push_back(b[i] - ‘0’);
vector<int> C;
if (cmp(A, B)) C = sub(A, B);
else C = sub(B, A), cout << '-';
for (int i = C.size() - 1; i >= 0; i -- ) cout << C[i];
cout << endl;
return 0;
}
### 高精度乘法
存储与上相同。
#### 计算过程
这里先列出计算式的通式
![image-20220911154058993](https://img-blog.csdnimg.cn/img_convert/c153e5c3fc068a6adb986deeed4b22ff.png)
与常见的计算相似,每一位分别考虑进位和取余当前的数字
当前位:
C
0
=
(
A
0
∗
B
1
B
0
+
t
)
%
10
C\_0 = (A\_0 \* B\_1 B\_0 + t) \% 10
C0=(A0∗B1B0+t)%10
进位:
t
=
(
A
0
∗
B
1
B
0
)
/
10
t = (A\_0 \* B\_1 B\_0) / 10
t=(A0∗B1B0)/10
注意:这里是把B看成一个整体,而不是和一般的乘法一样。这样b方便计算,同时也方便存储(直接存为int就行)。
#### 例题:高精度乘法
给定两个非负整数(不含前导 0) A 和 B,请你计算 A×B 的值。
**输入格式**
共两行,第一行包含整数 A,第二行包含整数 B。
**输出格式**
共一行,包含 A×B 的值。
**数据范围**
1
≤
A
的长度
≤
100000
1≤A的长度≤100000
1≤A的长度≤100000,
0
≤
B
≤
10000
0≤B≤10000
0≤B≤10000
**输入样例:**
2
3
**输出样例:**
6
#### 算法模板
#include
#include
using namespace std;
vector mul(vector &A, int b)
{
vector C;
//进位
int t = 0;
for (int i = 0; i < A.size() || t; i ++ )
{
if (i < A.size()) t += A[i] \* b;
C.push\_back(t % 10);
t /= 10;
}
while (C.size() > 1 && C.back() == 0) C.pop\_back();
return C;
}
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for (int i = a.size() - 1; i >= 0; i -- ) A.push\_back(a[i] - '0');
auto C = mul(A, b);
for (int i = C.size() - 1; i >= 0; i -- ) printf("%d", C[i]);
return 0;
}
核心模板
if (i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
### 高精度除法
#### 计算过程
高精度除法的通式如下:
![image-20220911165652347](https://img-blog.csdnimg.cn/img_convert/53c70294696c478076d0c65efcf6416e.png)
仿照求解除法的过程,可以设计高精度除法算法如下:
最开始余数r为0
(核心模板)
* r
=
r
∗
10
+
A
3
r = r \*10 + A \_3
r=r∗10+A3
* C
3
=
(
r
∗
10
+
A
3
)
/
b
C\_3 = (r \*10 + A \_3) / b
C3=(r∗10+A3)/b ;
* r
=
r
%
b
r = r \% b
r=r%b
#### 例题:高精度除法
给定两个非负整数(不含前导 0) A,B,请你计算 A/B 的商和余数。
**输入格式**
共两行,第一行包含整数 A,第二行包含整数 B。
**输出格式**
共两行,第一行输出所求的商,第二行输出所求余数。
**数据范围**
![img](https://img-blog.csdnimg.cn/img_convert/748ea858eaa508ff5982d2b39c84b023.png)
![img](https://img-blog.csdnimg.cn/img_convert/96b6d2d0f7f43080bff336b5a19281c9.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
3
)
/
b
C\_3 = (r \*10 + A \_3) / b
C3=(r∗10+A3)/b ;
* r
=
r
%
b
r = r \% b
r=r%b
#### 例题:高精度除法
给定两个非负整数(不含前导 0) A,B,请你计算 A/B 的商和余数。
**输入格式**
共两行,第一行包含整数 A,第二行包含整数 B。
**输出格式**
共两行,第一行输出所求的商,第二行输出所求余数。
**数据范围**
[外链图片转存中...(img-Jdj0PtI8-1715512588224)]
[外链图片转存中...(img-dFmiODp9-1715512588224)]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化的资料的朋友,可以添加戳这里获取](https://bbs.csdn.net/topics/618658159)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**