2024年最全统计学习方法资源汇总_统计学习方法汇总(2),2024年最新准备Golang面试

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

2. 决策树

决策树的核心在于对熵的理解,算法有ID3,C4.5,以及CART算法。参考的博文有:

3.感知机和支持向量机

这两部分都属于对几何空间的划分,可以放在一块学,支持向量机是感知机的升级版,该系列对数学的要求较高,是块难啃的骨头。参考博文有:

在总结之余,有一篇大神的博文高达56万的阅读量,可谓是SVM典型之作,强烈推荐。

4.朴素贝叶斯方法

深刻的贝叶斯原理,它的哲学绝对不是一行简单的贝叶斯公式所能描述的。参考博文有:

又发掘了一篇大神之作,现居美国研究心理学,从他口中叙述的贝叶斯令人印象深刻,强烈推荐。

5.逻辑斯蒂回归模型与最大熵模型

对熵有了一定的概念之后,以及了解了概率模型的极大似然估计方法后,便可以开始上述两个模型的学习了。参考博文有:

关于最大熵模型,可以参考吴军之作《数学之美》,深入浅出。

6. EM算法及隐马尔可夫模型

EM算法是解决含隐变量问题的迭代算法,是隐马尔可夫模型中Baum-Welch算法的一般形式,所以必须先学习EM算法,才能理解隐马尔可夫模型的学习算法。而隐马尔可夫模型则可归结为三个大问题:概率计算,参数学习,模型预测。参考的博文有:

关于EM算法的参考资料较多,可以直接参看上述博文的参考文献。

大神之作总是需要单独拎出来,说一下,讲的实在是太棒了。

7. 条件随机场

它是这本书的终极大boss,谁叫它放在了最后呢,它可谓是朴素贝叶斯、逻辑斯蒂回归、最大熵模型及隐马尔科夫模型的综合升级版。所以必须最后一个学,否则云里雾里。参考博文有:

那么这里就有一篇关于应用【概率模型】进行多元分类和序列标注的introduction,参考链接如下:

能帮助你理解书中所提到的【判别模型】和【生成模型】的区别。

8. 提升方法

指数损失函数的经典应用,三个臭皮匠顶个诸葛亮。参考博文有:

提升方法,引入了计算机学习理论PAC,发现了一位大牛,毕业于浙江大学,留美博士,链接如下:

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值