网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
2、思路
(动态规划)
O
(
n
2
)
O(n^2)
O(n2)
状态表示: f[i][j]
表示长度为i
,末尾项为a[i-1]
的a
数组,与长度为j
,末尾项为b[j-1]
的b
数组的公共子数组的集合,属性是最大长度。(a
数组和b
数组下标都是从0
开始的,f
数组下标从1
开始)
集合划分: 我们以末尾元素a[i-1]
和b[i-1]
是否相同划分集合。
状态计算:
如果长度为i
,末尾项为a[i-1]
的a
数组和长度为j
,末尾项为b[j-1]
的b
数组中的a[i-1] == b[j-1]
。也就是说这两个数组的末尾元素相等,那么f[i][j] = f[i-1][j-1] + 1
,f[i][j]
可以由f[i-1][j-1]
转移而来;
否则f[i][j] = 0
,表示以a[i-1]
和b[j-1]
为结尾的公共子数组的最大长度为0
,因为其结尾元素不相等;
故状态转移方程为:
f[i][j] = f[i-1][j-1] + 1
,(a[i-1] == b[j-1]
)
f[i][j] = 0
,(a[i-1] != b[j-1]
)
细节:
- 初始化
f[i][0] = 0
,f[0][j] = 0
。表示长度为i
的a
数组和长度为0
的b
数组或者长度为0
的a
数组和长度为j
的b
数组最长公共子数组长度为0
。 - 最终的答案为
res = max(res,f[i][j])
,表示以a
数组的各个元素为结尾的子数组和以b
数组的各个元素为结尾的子数组的最长公共子数组长度。
完整分析图示:
3、c++代码
class Solution {
public:
int findLength(vector<int>& a, vector<int>& b) {
int n = a.size(), m = b.size();
vector<vector<int>> f(n + 1, vector<int> (m + 1, 0));
int res = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
{
if(a[i-1] == b[j-1])
f[i][j] = f[i-1][j-1] + 1;
else
f[i][j] = 0;
res = max(res, f[i][j]);
}
return res;
}
};
4、java代码
class Solution {
public int findLength(int[] a, int[] b) {
int n = a.length;
int m = b.length;


**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618668825)**
这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618668825)**