既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
- Aggregations
- Elasticsearch: 运用 shard_size 来提高 term aggregation 的精度
- Elasticsearch: 透彻理解 Elasticsearch 中的 Bucket aggregation
- Elasticsearch: Rare Terms Aggregation
- Elasticsearch: top_hits aggregation
- Elasticsearch:Top metrics 聚合
- Elasticsearch: Pipeline aggregation 介绍 (一)(二)
- Elasticsearch: aggregation 介绍
- Elasticsearch:Aggregation 简介
- Elasticsearch: significant terms aggregation
- Elasticsearch:在 Elasticsearch 中的 Composite Aggregation
- Elasticsearch:通过 sampler 聚合来改善繁重的 Elasticsearch 聚合
- Elasticsearch:Script aggregation (1)“) (2)”)
- Elasticsearch:Serial Differencing aggregation 介绍
- Elasticsearch:聚合所有内容:Elasticsearch 7 中的新聚合
- Elasticsearch:通过 inference pipeline 聚合为你的数据科学增加灵活性
- Elasticsearch:Moving average aggregation 介绍
- Elasticsearch:一个关于 aggregation 的例子
- Elasticsearch:Elasticsearch 中的父级和兄弟级聚合
- Elasticsearch:Bucket script 聚合
- Painless 编程
- Elasticsearch:Painless script 编程
- Elasticsearch:Painless scripting
- Elasticsearch:Painless scripting 高级编程
- Elasticsearch:Painless 编程调试
- Elasticsearch:使用新的 field API 简化 Painless 语法和文档字段访问 - Elastic Stack 8.1
- Elasticsearch:如何在 Elasticsearch 中轻松编写 Painless 脚本
- Elasticsearch:Painless execute API
- Kibana: 如何在 Kibana 中生成 Scripted fields
- Elasticsearch:Script fields 及其调试
- Kibana:使用 Scripted fields 来提高数据的可观测性
- Kibana:运用 script fields 对数据进行清洗
- Elasticsearch:Script aggregation (1)“) (2)”)
- Elasticsearch:Script fields 及其调试
- Elasticsearch:避免不必要的脚本 - scripting
- Elasticsearch:Painless scripting 编程实践 - 总结 Painless 编程的使用场景
- Kibana:使用 Painless Lab 来测试代码
- Elasticsearch:以 “Painless” 方式保护你的映射
16)Ingest pipeline
- Elasticsearch:创建 Ingest pipeline
- Elasticsearch:Ingest pipeline 介绍
- Elasticsearch:Ingest Pipeline 实践
- Elasticsearch:ingest pipeline 使用示例 - 解析常用日志格式
- 如何在 Elasticsearch 中使用 pipeline API 来对事件进行处理
- Elasticsearch:如何处理 ingest pipeline 中的异常
- Elasticsearch:如何正确处理 Elasticsearch 摄取管道故障
- Elasticsearch:ingest pipelines - 使用技巧和窍门
- Elasticsearch:创建一个Elasticsearch Ingest 插件
- Elasticsearch:Elastic可观测性 - 运用 pipeline 使数据结构化
- Elasticsearch:如何使用 Elasticsearch ingest 节点来丰富日志和指标
- Elasticsearch:创建属于自己的 Ingest processor
- Elasticsearch:深入理解 Dissect ingest processor
- Elasticsearch:Dissect 和 Grok 处理器之间的区别
- Elasticsearch:使用 pipelines 路由文档到想要的 Elasticsearch 索引中去
- Elasticsearch:使用 ingest pipeline 来管理索引名称
- Elasticsearch:在 Elasticsearch 中计算摄取延迟并存储摄取时间以提高可观察性
- Elasticsearch:从零开始到搜索 - 使用 Elasticsearch 摄取管道玩转你的数据
- Elasticsearch 摄取管道 — 检测到管道的死循环
- Elasticsearch:自动使用服务器时间设置日期字段并更新时区
- Elasticsearch:Simulate ingest API
- 启动 Elastic 安全
- Elasticsearch:设置 Elastic 账户安全
- Elasticsearch:用户安全设置
- Elasticsearch:将文档级安全性 (DLS) 添加到你的内部知识搜索 添加到你的内部知识搜索")
- 在 Elasticsearch 中查找所需安全权限的简单方法
- Elasticsearch:LDAP 用户鉴权
- Elasticsearch:使用 elasticsearch-keystore 配置安全并创建内置用户账号
- 配置 SSL、TLS 以及 HTTPS 来确保 Elasticsearch、Kibana、Beats 和 Logstash 的安全
- Elasticsearch:配置 TLS/SSL 和 PKI 身份验证
- Elasticsearch:使用 elasticsearch-keystore 配置安全并创建内置用户账号
- Elasticsearch:找回密码 - Password Recovery
- Elasticsearch:基于文件的用户认证
- Kibana:为不同的用户生成不同的 Space
- Kibana:为不同的用户生成不同的 Kibana 界面
- Elasticsearch:运用 API 创建 roles 及 users
- Elasticsearch:Security API 介绍
- Elastic:为 Elasticsearch 启动 HTTPS 访问
- Security:如何安装 Elastic SIEM 和 EDR
- Elasticsearch:如何创建 Elasticsearch PEM 和/或 P12 证书?
- Elasticsearch:免费和开放的 Elastic 可观性入门
- Elastic:为 Elastic Docker 部署设置安全
- Elasticsearch:使用 IP 过滤器限制连接
- Elastic:使用 Postman 来访问 Elastic Stack
- Elasticsearch:创建 API key 接口访问 Elasticsearch
- Elasticsearch:无需基本身份验证即可创建用于访问的不记名令牌
- Elasticsearch:如何让匿名的用户访问受限的资源
- Elasticsearch:使用不同的 CA 更新安全证书 (一)(二)
18) 解决方案 - Solutions
SIEM 及 Endpoint Security:
- Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 ( 一)
- Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 (二)
- Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 (三)
- Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 (四)
- Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 ( 五)
- Security:Elastic Security 入门
- Security:如何安装 Elastic SIEM 和 EDR
- Elasticsearch:EQL 入门 - 使用 EQL 检测威胁
- Elasticsearch:为 Elastic Security 定制 Detection rules
- Security:使用来自 Elastic Security 的端点威胁情报保护主机
Enterprise Search:
- Enterprise:Elastic Workplace 搜索:随时随地搜索所有内容 (一)
- Enterprise:Elastic Workplace 搜索:随时随地搜索所有内容 (二)
- Enterprise:如何将自定义数据导入 Elastic Workplace Search - 一个简单的CSV示例
- Enterprise:网站搜索 - Elastic Site Search
- Enterprise:如何运用 Elastic App Search 快速建立出色的 React 搜索体验
- Enterprise:Elastic App Search 入门
- Enterprise:使用 Elastic Stack 8.2 中的 Elasticsearch API 来定位 App Search 中的文档
- Enterprise:如何使用 Python 客户端将数据提取到 App Search 中
- Enterprise:通过 App search 摄入数据 - Python
- Enterprise:如何使用 PHP 客户端将数据提取到 App Search 中
- Enterprise:如何使用 Ruby 客户端将数据提取到 App Search 中
- Enterprise:Elastic App Search - Web 爬虫器实践
- Enterprise:推出 Elastic App Search Web 爬虫器
- Enterprise:Web Crawler 基础 (一)(二)
- Elastic App Search:免费的产品,可提供出色的搜索体验
- Enterprise:创建 meta 引擎来扩展你的 App search 体验
- Enterprise:如何在 Elastic 企业搜索引擎中添加对更多语言的支持
- Enterprise:通过 App search 摄入 TMDB 电影数据
- Workplace Search 的演变:使用 Elasticsearch 搜索你的私人数据
Observability:
- Observability:Elastic 可观测性是什么?
- Beats:使用 Heartbeat 进行 Uptime 监视
- Beats:使用 Autodiscover 监控 Docker 容器
- Observability:Elastic Metrics 应用介绍
- Observability:Elastic Logs 应用介绍
- Observability: 使用 Elasticsearch,Kibana,Heartbeat 监视网站并使用 Slack 发出警报
- Observability:网站 User Experience 监控
- APM:
- Elastic:应用程序性能监视/管理 (APM) 实践 实践")
- Observability:如何为 Java 应用进行 APM
- Observability:使用 Elastic Agent 提取应用程序跟踪 - Elastic Stack 8.0
- Observability:OpenTelemetry 在 Elastic APM 中的集成
- Observability:设置 Elastic APM Java 代理 - 自动设置
- Observability:具有 Web 容器安装的 APM Java agent 动手实践 - Apache Tomcat
- Elastic Stack - 在一个集中位置发送、存储和分析你的日志
- Solutions:如何使用 Elastic APM 来测试多语言微服务应用程序
- Observability:从零基础到能够完成微服务可观测性的专家 - Service Map 实践
- Observability:使用 APM 中的 Service Map 了解和调试应用程序
- Solutions:如何为 Python Flask 应用进行 APM
- Solutions:如何为 Python Django应用进行 APM
- Solutions:为 Nodejs 微服务提供 APM 功能
- Observability: 如何为 APM 定制 transactions 及 spans
- A nice article from an Elastic Colleague
- Observability:在 Elastic Observability 部署中添加免费和开放的 Elastic APM - 7.x
- Observability:添加免费和开放的 Elastic APM 作为 Elastic 可观察性部署的一部分 - 8.x
- Observability:从零开始创建 Java 微服务并监控它 (一)(二)
- Elasticsearch:使用 Elastic APM 监控 Android 应用程序 (一)(二)
- Elastic 可观察性 - 适用于当今 “永远在线” 世界的解决方案
- Observability: Elastic RUM (真实用户监控)演示
- Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型
- 如何使用 Java 代理插件在不更改应用程序代码的情况下捕获自定义指标
- 如何将 OpenTelemetry 检测与 Elastic APM Agent 功能相结合
- 了解 APM:如何向 OpenTelemetry Java 代理添加扩展
- 如何解决 Elasticsearch 查询缓慢的问题以获得更好的用户体验
- Observability:识别生成式 AI 搜索体验中的慢速查询
- Observability:通过示例应用程序开始使用 OpenTelemetry 检测
- Observability:使用 OpenTelemetry 手动检测 Go 应用程序
- Elastic Observability 中的原生 OpenTelemetry 支持
- Observability:检测 OpenTelemetry 的推荐指南
- Observability:使用 OpenTelemetry 自动检测 Java 应用程序
- Observability:使用适用于 Python 应用程序的 OpenTelemetry 进行自动检测
- Observability:使用 OpenTelemetry 对 Node.js 应用程序进行自动检测
- Observability:使用 OpenTelemetry 手动检测 .NET 应用程序
- Elastic Stack 和 Docker Compose 入门:第 2 部分
- 如何在 Azure 容器应用程序上部署具有 Elastic Observability 的 Hello World Web 应用程序
- Elasticsearch:适用于 iOS 和 Android 本机应用程序的 Elastic APM
- Observability:使用 OpenTelemetry 和 Elastic 监控 OpenAI API 和 GPT 模型
- Observability:使用 Elastic AI Assistant 和 APM 分析 OpenTelemetry 应用程序
- 从 Elastic 的 Go APM 代理迁移到 OpenTelemetry Go SDK
- Universal Profiling™
- Elastic Universal Profiling™ 是一种连续分析解决方案,现已正式上市
19) 通知及警报
- Kibana:Alerting 介绍
- Elastic:使用 ElastAlert 发送通知
- Elastic:使用 ElastAlert 发送邮件通知
- X-Pack:创建阈值检查警报
- Elasticsearch:开始使用 Watcher
- Elastic:创建你的第一个 Elastic watcher
- Elastic:创建你的第一个 Elastic watcher - 邮件通知
- Elastic:如何创建一个动态的阈值警报
- Elastic:创建你的第一个 Elastic Watcher - Webhook
- Elastic:创建一个 Elastic Log 及 Index alert - 7.7 发布版
- Elastic: 创建一个 Elastic 邮件警报 - 7.7 发行版
- Kibana:创建一个 webhook alert - Elastic Stack 8.2
- Elastic:Elastic Maps 基于位置的警报 - 7.10
- Observability: 使用 Elasticsearch,Kibana,Heartbeat 监视网站并使用 Slack 发出警报
- Elastic:如何为机器学习异常发送通知
- 跨集群操作及备份
- Elasticsearch:跨集群搜索 Cross-cluster search (CCS)")
- Elasticsearch:跨集群搜索 Cross-cluster search(CCS)及安全
- Elasticsearch:如何为 CCR 及 CCS 建立带有安全的集群之间的互信
- Elasticsearch:如何在不更新证书的情况下为集群之间建立互信
- Elasticsearch:跨集群复制 Cross-cluster replication(CCR) ")
- Elasticsearch:跨集群复制应用场景及实操 - Cross Cluster Replication
- 轻松复制:Elasticsearch 中跨集群复制指南
- Elasticsearch:索引备份及恢复
- Maps 及位置搜索
- Kibana:如何使用 Kibana 可视化地理位置数据
- Elasticsearch:理解 Elastic Maps 中的 geohash 及其聚合
- Observability:如何在 Docker 之上使用 Elastic Stack 和 Kafka 可视化公共交通
- Beats:运用 Elastic Stack 分析 COVID-19 数据并进行可视化分析 - 续
- Beats:运用 Elastic Stack 分析 COVID-19 数据并进行可视化分析
- Kibana:在 Kibana 中定制 Regional Map
- Logstash:导入 zipcode CSV 文件和 Geo Search 体验
- Kibana:改善地理位置数据摄入 - 7.10
- Observability:使用 Elastic Stack 分析地理空间数据 (一)
- Observability:使用 Elastic Stack 分析地理空间数据 (二)
- Kibana:为 Elastic Maps 添加矢量地图层
- Kibana:通过 Elastic Maps 中的全局行政区层为 IP 分析带来新见解
- Kibana:在 Kibana 中使用 Maps 和 Timelion 分析地震数据
- Elasticsearch:使用 Elasticsearch 进行地理位置搜索
- Elasticsearch:使用 Point 和 Shape 字段类型
- Elasticsearch:如何制作 GeoJSON 文件并进行地理位置搜索
- Elasticsearch:如何针对一个区域的搜索结果进行加权
- Elasticsearch:distance feature 查询 - 对靠近位置或时间点的文档提高相关性
- Elasticsearch:使用 distance feature 查询提高分数
- Elasticsearch:Elastic Maps Server 介绍
- Elastic:Elastic Maps 基于位置的警报 - 7.10
- Elastic:运用 Elastic Maps 实时跟踪及可视化资产分布并地理围栏告警(一)(二)
- Kibana:构建地图以按国家或地区比较指标
- Kibana:如何在 Elastic Maps 中替换默认的路线图
- Elasticsearch:Geo-grid query - Elastic Stack 8.3
- Kibana:摄入 GeoJSON 数据
- Elasticsearch:使用反向地理编码在地图上显示自定义区域
- Elasticsearch:构建地图以按国家或地区比较指标
- Kibana:使用 Maps 来显示分布式的团队
- Elasticsearch:在 Elasticsearch 中按距离有效地对地理点进行排序
- Elasticsearch:Geo Point 和 Geo Shape 查询解释
- Elasticsearch:位置搜索介绍
- Elasticsearch:Geoshape query
22)机器学习
- Elastic:机器学习的原理及实践 - single metric job
- Elastic:机器学习的实践 - multi metric job
- Elastic:机器学习的实践 - population job
- Elastic:机器学习的实践 - categorization
- Elastic:机器学习 Demo
- Elastic:如何使用 Elastic 机器学习来侦测异常(一),(二)
- Elastic:使用机器学习 API 创建一个任务
- Elasticsearch:使用运行时字段更改机器学习中的 datafeed 数据
- Elastic:机器学习异常的可视化呈现
- Elastic:验证机器学习预测的准确性
- Elastic:如何为机器学习异常发送通知
- Elastic:使用 Elastic 有监督的机器学习进行二进制分类
- Elasticsearch:在 Elasticsearch 中使用语言识别进行多语言搜索
- Elasticsearch:通过 inference pipeline 聚合为你的数据科学增加灵活性
- Elasticsearch:使用 Elastic 机器学习进行 data frame 分析
- Elastic:使用 Elastic Stack 进行异常值检测 - airbnb 数据分析
- Elasticsearch:Supervised Machine Learning - 有监督的机器学习
- 如何使用 transform 来跟踪你最近的客户订单
- Elasticsearch:Elastic Maps 现在支持机器学习异常层
23)丰富数据及 lookup
- Elasticsearch: NLP (Natural Language Processing)在 Elasticsearch 中的应用 - 7.x
- Logstash:运用 memcache 过滤器进行大规模的数据丰富
- Logstash:Logstash translate 过滤器简介
- Logstash:运用 Elasticsearch 过滤器来丰富数据
- Observability:使用 Elastic Stack 分析地理空间数据 (一)
- Elasticsearch:运用 geoip 处理器来丰富数据
- Elasticsearch:使用 user agent 摄入处理器来丰富数据
- Logstash:运用 jdbc_streaming 来丰富我们的数据
- Logstash:Jdbc_static filter plugin 介绍
- Elasticsearch:如何使用 Elasticsearch ingest 节点来丰富日志和指标
- Elasticsearch:enrich processor (7.5发行版新功能)
- Elasticsearch:使用 Elasticsearch ingest pipeline 丰富数据
- 使用 Logstash 及 enrich processor 实现数据丰富自动化
- Elasticsearch 的新 range 丰富策略使上下文数据分析更上一层楼 - 7.16
- Elasticsearch:理解 Elasticsearch 中的 Percolator 数据类型及 Percolate 查询
- Elasticsearch:Elasticsearch percolate 查询
- Elasticsearch:理解 Elasticsearch Percolate 查询
- Beats:Beats processors
- Logstash:Data转换,分析,提取,丰富及核心操作
- Elastic:我应该使用 Logstash 或是 Elasticsearch ingest 节点?
- Elasticsearch:Terms lookup query - 关联两个不同索引的搜索
- Elasticsearch:检索运行时字段及使用 lookup 运行时字段丰富数据
- Elasticsearch:Runtime fields 及其应用(一)
- 使用 Logstash 丰富你的 Elasticsearch 文档
- 在 Elasticsearch 中丰富你的 Elasticsearch 文档
- 从边缘设备丰富你的 Elasticsearch 文档
24) 监视及管理
- Beats:通过 Metricbeat 实现外部对 Elastic Stack 的监视
- Elastic:通过 Logstash 或 Kafka 使用 Metricbeat 监控 Elastic Stack
- Elastic:监控 Elasticsearch 及 Kibana
- Elastic:监控 Beats 及 APM Server
- Logstash:使用 Metricbeat 监控 Logstash
- Observability:使用 Elastic APM 监控 Elastic Enterprise Search 性能
- Observability:使用 Elastic Agent 来摄入日志及指标 - Elastic Stack 8.0
- Observability:集群监控 (一) - Elastic Stack 8.x
- Observability:集群监控 (二) - Elastic Stack 8.x
- Observability:运用 Fleet 来轻松地导入 Nginx 日志
- Observability:使用 Elastic Agent 和 Ingest Manager 简化数据导入 (一)
- Observability:使用 Elastic Agent 和 Ingest Manager 简化数据导入 (二)
- Logstash: 启动监视及集中管理
- Elastic:配置 Elasticsearch 服务器 logs
- Elasticsearch:使用带有 X-Opaque-Id 的慢速查询功能在 Elasticsearch 中调试慢速查询
- Observability:Synthetic monitoring - 合成监测入门(一)(二)
- Observability:Synthetic monitoring - 创建浏览器监测,配置单独的浏览器监测器及项目
- 一个问题的两个方面:使用合成监测(synthetic monitoring)将测试和监测相结合
- Observability:Synthetic monitoring - 动手实践
25)各类语言日志导入
- Beats: 使用 Filebeat 进行日志结构化 - Python
- Elasticsearch:自定义应用程序的日志记录 - Elastic Common Schema
- Beats:使用 Elastic Stack 记录 Python 应用日志
- Elasticsearch:运用 Python 实时通过 Logstash 写入日志到 Elasticsearch
- Elasticsearch:使用 Filebeat 从 Node.js Web 应用程序提取日志
- Beats:使用 Elastic Stack 记录 Golang 应用日志
- Beats:使用 Filebeat 将 golang 应用程序记录到 Elasticsearch - 8.x
- Beats:使用 Elastic Stack 来记录 Java Apps 日志
- Elastic:使用 Fluentd 及 Elastic Stack 进行应用日志采集
- Elastic:运用 Elastic Stack 分析 Spring boot 微服务日志 (一)
- Elastic:运用 Elastic Stack 分析 Spring boot 微服务日志 (二)
- Elastic Stack - 在一个集中位置发送、存储和分析你的日志
26)生命周期管理(ILM)
- Elasticsearch:Index 生命周期管理入门
- Elastic: 使用索引生命周期管理实现热温冷架构
- Elastic:Data stream 在索引生命周期管理中的应用
- Elasticsearch 索引生命周期和翻滚 (rollover) 策略 策略")
- Elastic:Data tiers 介绍及索引生命周期管理 - 7.10 之后版本
- Elasticsearch:Searchable snapshot - 可搜索的快照
- Logstash:为 Logstash 日志启动索引生命周期管理
- Elasticsearch:Snapshot 生命周期管理
- Elasticsearch:使用新的冻结层直接搜索 S3
- Elasticsearch:通过热、温、冷和冻结层管理数据自动化 — 无需编码!
- Elasticsearch:使用 docker compose 来实现热温冷架构的 Elasticsearch 集群
- Elasticsearch:Data streams(一)(二)(三)
- Elasticsearch:将 ILM 管理的数据流迁移到数据流生命周期
- Canvas
- Kibana:Canvas入门
- Kibana:创建 Canvas workpads
- Kibana:Canvas 教程 - 创建一个工作台以监视销售
- Elastic:运用 Canvas 实时监控物联网设备状态并控制设备
- Kibana:如何在 Canvas 中动态地显示时间
- Kibana:如何在 Canvas 中动态地显示图片
- Kibana:如何在 canvas 中使用 timelion 绘图
- Kibana:如何在 canvas 中实现 gauge 并动态设置颜色
- Elasticsearch SQL/ESQL
- Elasticsearch:Elasticsearch SQL介绍及实例 (一)
- Elasticsearch:Elasticsearch SQL介绍及实例(二)
- Elasticsearch:使用 JDBC client 连接到 Elasticsearch - SQL Workbench
- Elasticsearch:通过 JDBC 使用 SQL 来查询索引 - DBeaver
- 推出 Elasticsearch 查询语言 (ES|QL)")
- 从白日梦到现实:推出 Elastic 的管道查询语言 ES|QL
- Elasticsearch:ES|QL 查询语言简介
- Elasticsearch:ES|QL 函数及操作符
- Elasticsearch:ES|QL 查询中的元数据字段及多值字段
- Elasticsearch:使用 ES|QL
- ES|QL(Elasticsearch 查询语言)入门
- Elasticsearch:ES|QL 中的数据丰富
- Elasticsearch:在 ES|QL 中使用 DISSECT 和 GROK 进行数据处理
- Elasticsearch:ES|QL 的限制
- Elasticsearch:ESQL 简介 — 一种用于灵活、迭代分析的新查询语言
- Elasticsearch:ES|QL 动手实践
- Elasticsearch:ES|QL 查询展示
- Elasticsearch:ES|QL 入门 - Python Notebook
- Elasticsearch:从 ES|QL 到 Python 数据帧
- Elasticsearch:ES|QL 快速入门
- ES|QL:Elasticsearch的 新一代查询语言
- 使用新的 Elasticsearch 查询语言 ESQL 实现 joins、管道等_哔哩哔哩_bilibili
- Graph
30) 数据库数据同步
- Elasticsearch:同步 MongoDB 数据到 Elasticsearch
- Logstash:如何使用 Logstash 和 JDBC 确保 Elasticsearch 与关系型数据库保持同步
- Elasticsearch:将关系数据库中的数据提取到 Elasticsearch 集群中
- Logstash:把 MySQL 数据导入到 Elasticsearch 中
- 数据集成的强大联盟:Elasticsearch、Kibana、Logstash、MySQL
- Enterprise:使用 MySQL connector 同步 MySQL 数据到 Elasticsearch
- Elasticsearch:如何将 MongoDB 数据引入 Elastic Cloud
- Elastic 认证:
- Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师
- Elastic 认证种类:Official Certification for Users of Elasticsearch and Kibana | Elastic Training
- Elasric certification FAQ: Elastic Certification FAQ | Elastic Training
- Certification registration: …
- Elastic certification training:
- How to prepare for the Elastic Certified Engineer Exam | Elastic Videos
- How to Prepare for the Elastic Certified Analyst Exam | Elastic Videos
- Free and Open Search: The Creators of Elasticsearch, ELK & Kibana | Elastic
- Free and Open Search: The Creators of Elasticsearch, ELK & Kibana | Elastic
- Elastic Certification: The Next Step in Your Elasticsearch Training Journey | Elastic Blog
- Preparing for the Elastic Certified Engineer Exam - Get Elasticsearch Certified (1)")
- Preparing for the Elastic Certified Engineer Exam - Get Elasticsearch Certified (2)")
- How to Prepare for the Elastic Certified Analyst Exam
- Preparing for the Elastic Certified Observability Engineer Exam
- 准备 Elastic 认证工程师考试
32)版权介绍:
- Elastic:开放公开,火力全开(第二部分)
- Amazon,我们完全不能接受 — 因此我们必须变更 Elastic 许可协议
- Elastic:许可协议变更澄清
- Elastic 许可更新
- Elastic:隆重推出授权更加简单且宽松的 Elastic 许可 v2;SSPL 仍可选择使用
33) Elastic Stack 架构
- Beats:Beats 入门教程 (二)(Beats => Elasticsearch)
- Elastic:使用 Kafka 部署 Elastic Stack ( Beats => Kafka => Logstash => Elasticsearch)
- Observability:Data pipeline:Beats => Redis => Logstash => Elasticsearch
- Elasticsearch:从 Kafka 到 Elasticsearch 的实时用户配置文件数据管道(Python client => Kafka => Logstash => Elasticsearch)
- Elasticsearch:使用 Logstash 构建从 Kafka 到 Elasticsearch 的管道- (Nodejs client => Kafka => Logstash => Elasticsearch)
- Observability:如何在 Docker 之上使用 Elastic Stack 和 Kafka 可视化公共交通 (Python client => Kafka => Logstash => Elasticsearch)
- Logstash:如何使用 Elasticsearch,Logstash 和 Kibana 管理 Apache 日志 (Logstash => Elasticsearch)
- Elastic:Data pipeline:使用 Kafka => Logstash => Elasticsearch
- Logstash:Logstash 入门教程 (二)(Beats => Logstash => Elasticsearch)
- Elastic:运用 Docker 安装 Elastic Stack 并采集日志文件(Beats => Logstash => Elasticsearch)
- Elasticsearch:为日志分析设置安全的 Elasticsearch 管道(Filebeat => Logstash => Elasticsearch)
- Elasticsearch:使用 Apache Flink、Elasticsearch 打造实时事件处理及搜索 (Flink => Elasticsearch)
- Elasticsearch:Data pipeline: Kafka => Flink => Elasticsearch
- Elastic:使用 Fluentd 及 使用 Docker 来安装 Elastic Stack (Fluentd => Elasticsearch)
- Elastic:使用 Fluentd 及 Elastic Stack 进行应用日志采集 (Fluentd => Elasticsearch)
- Observability:使用 Elastic Agent 来摄入日志 - Elastic Stack 8.0 (Elastic Agent => Elasticsearch)
- Elasticsearch:Apache spark 大数据集成(Spark => Elasticsearch)
- Elasticsearch:Hadoop 大数据集成 (Hadoop => Elasticsearch)
- Observability:如何有效地将应用日志发送到 Elasticsearch
- Observability:如何把 Elastic Agent 采集的数据输入到 Logstash 并最终写入到 Elasticsearch (Elastic Agents => Logstash => Elasticsearch)
- Logstash:迁移数据到 Elasticsearch (Database => Logstash => Kafka => Logstash => Elasticsearch)
34)Transforms
- Elasticsearch:Transforms 介绍
- Elasticsearch:transform 例子
- 如何使用 transform 来跟踪你最近的客户订单
- Elasticsearch:计算多个状态更新的总持续时间 - transform 应用案例
- Elasticsearch:使用 Elasticsearch Transforms 进行产品推荐
- Elasticsearch:使用 Elastic 机器学习进行 data frame 分析
- Kibana:运用 transform 来实现服务质量目标(SLO)的可视化
35)Elastic Stack Crash Course for Beginners
如果你的英文够好,这个系列的文章非常适合初学者来学习。
- NLP - 自然语言处理,向量搜索及人工智能
- Elasticsearch:NLP 和 Elastic:入门
- Elasticsearch:什么是生成式人工智能?
- Elasticsearch:什么是自然语言处理(NLP)?
- Elasticsearch:什么是大语言模型 (LLMs)??")
- Elasticsearch:什么是大语言模型(LLM)?
- NLP vs. LLMs: 理解它们之间的区别
- Elasticsearch:什么是向量嵌入?
- ELasticsearch:什么是语义搜索?
- Elasticsearch:什么是向量数据库?
- Elasticsearch:什么是搜索引擎?
- Elasticsearch:什么是情感分析?
- Elasticsearch:什么是机器学习?
- Elasticsearch:什么是检索增强生成 (RAG)??")
- Elasticsearch:什么是向量和向量存储数据库,我们为什么关心?
- Elasticsearch:什么是余弦相似度?
- Elasticsearch:LangChain 是什么?
- Elasticsearch:什么是非结构化数据?
- Elasticsearch:什么是结构化数据?
- Elasticsearch:什么是文本分类?
- Elasticsearch:什么是 kNN?
- Elasticsearch:什么是 DevOps?
- Elasticsearch: NLP (Natural Language Processing)在 Elasticsearch 中的应用 - 7.x
- Elasticsearch 中使用 PyTorch 进行现代自然语言处理的介绍
- Elasticsearch:在摄入管道中添加 NLP 任务
- Elasticsearch:如何部署 NLP:文本嵌入和向量搜索
- Elasticsearch:如何部署 NLP:情绪分析示例
- Elasticsearch:如何部署 NLP:命名实体识别 (NER) 示例 示例")
- Elasticsearch:使用向量搜索来查询及比较文字 - NLP text embedding
- Elasticsearch:使用向量搜索来搜索图片及文字
- Elasticsearch:运用 Python 实现在 Elasticsearch 上的向量搜索
- Elasticsearch:使用 NLP 问答模型与你喜欢的圣诞歌曲交谈
- Elasticsearch:利用搜索提高医疗保健公平 - 用多语言 NLP 模型和分析来改善最终用户体验
- Elasticsearch:在满意度调查中实现并使用情感分析器
- Elasticsearch:使用 Elasticsearch 和 BERT 构建搜索引擎 - TensorFlow
- Elastic 图像相似度搜索概述
- Elasticsearch:图片相似度搜索的 5 个技术组成部分
- Elasticsearch:如何在 Elastic 中实现图片相似度搜索
- Elasticsearch:运用向量搜索通过图像搜索找到你的小狗
- Elasticsearch:在 Elastic Stack 8.0 中引入近似最近邻搜索
- Elasticsearch:探索 k-nearest neighbor (kNN) 搜索 搜索")
- Elasticsearch:结合两全其美:Elasticsearch 与 BM25 和 HNSW 的混合搜索
- ChatGPT 和 Elasticsearch:OpenAI 遇见私有数据(一)
- ChatGPT 和 Elasticsearch:OpenAI 遇见私有数据(二)
- 揭秘 ChatGPT:构建 AI 搜索的不同方法
- ChatGPT 和 Elasticsearch:使用 ChatGPT 处理 Elastic 数据的插件
- Elasticsearch:如何使用 Elasticsearch 以自然语言提示 ChatGPT
- ChatGPT 和 Elasticsearch:分面、过滤和更多上下文
- Elasticsearch:基于 Vector 的打分
- Elasticsearch:向量数据库的真相
- Elasticsearch:使用字节大小的向量节省空间 - 8.6
- Elasticsearch:在 Elastic 中访问机器学习模型
- Elastic 发布 Elasticsearch Relevance Engine™ — 为 AI 革命提供高级搜索能力
- Elastic Learned Sparse Encoder 简介:Elastic 用于语义搜索的 AI 模型
- 使用 Elastic Learned Sparse Encoder 和混合评分的卓越相关性
- Elasticsearch:倒数排序融合 - Reciprocal rank fusion (RRF)")
- 生成式人工智能(generative AI)对公共部门的影响
- Elasticsearch:使用 Transformers 和 Elasticsearch 进行语义搜索
- Elasticsearch:在 Elasticsearch 中使用 NLP 和向量搜索增强聊天机器人功能
- Elasticsearch:如何使用 Elasticsearch 和 Python 构建面部识别系统
- Elasticsearch:部署 ELSER - Elastic Learned Sparse EncoderR
- Elasticsearch:使用 ELSER v1 进行语义搜索
- Elasticsearch:使用 ELSER v2 进行语义搜索
- Elasticsearch:使用 ELSER 释放语义搜索的力量:Elastic Learned Sparse EncoderR
- Elasticsearch:使用 Elasticsearch 进行语义搜索 (ELSER)")
- Elasticsearch:使用 ELSER 文本扩展进行语义搜索
- Elasticsearch:如何通过 3 个简单步骤从 Elastic 数据中删除个人身份信息
- Elasticsearch:使用 Elasticsearch 向量搜索和 FastAPI 构建文本搜索应用程序
- 如何利用 Elastic 的向量数据库得到完美的词汇和 AI 驱动搜索
- 改进 Elastic Stack 中的信息检索:提高搜索相关性的步骤
- 改进 Elastic Stack 中的信息检索:对段落检索进行基准测试
- 改进 Elastic Stack 中的信息检索:引入 Elastic Learned Sparse Encoder,我们的新检索模型
- 改进 Elastic Stack 中的信息检索:混合检索 - hybrid retrieval
- Elastic 推出 Elastic AI 助手
- Elastic AI Assistant for Observability 和 Microsoft Azure OpenAI 入门
- 使用 LangChain 和 Elasticsearch 的隐私优先 AI 搜索
- 利用 Elasticsearch、ESRE、LLM 和 LangChain 加速制药行业的研发 — 第 1 部分
- Elasticsearch 中的向量搜索:设计背后的基本原理
- Elasticsearch:语义搜索、知识图和向量数据库概述
- Elasticsearch:什么是向量搜索以及它如何改进搜索结果
- Elastic Search 8.9:与 RRF 的混合搜索、更快的向量搜索和面向公众的搜索端点
- Elasticsearch:语义搜索 - Semantic Search in python
- 为生成式人工智能制作即时三明治
- 搜文本搜位置搜图片,1小时玩转阿里云 Elasticsearch
- 如何在 Elasticsearch 中将向量搜索与过滤结合起来 - Python 8.x
- Elasticsearch:利用向量搜索进行音乐信息检索
- Elasticsearch:将段落向量搜索添加到 Lucene
- Elasticsearch 中的向量搜索:设计背后的基本原理
- 检索与毒害 —— 对抗人工智能供应链攻击
- Elasticsearch:使用 ESRE 和生成式 AI 了解 TLS 日志错误
- 使用 Elasticsearch、OpenAI 和 LangChain 进行语义搜索
- 使用 Langchain 和 Elasticsearch 对私人数据进行人工智能搜索
- Elasticsearch:与多个 PDF 聊天 | LangChain Python 应用教程(免费 LLMs 和嵌入)
- 引入嵌入和向量搜索时的三个错误
- Elasticsearch:多语言语义搜索
- Elasticsearch:使用 huggingface 模型的 NLP 文本搜索
- Elasticsearch:使用 Langchain 和 OpenAI 进行问答
- Elasticsearch:使用 LangChain 对话链和 OpenAI 的聊天机器人
- Elasticsearch:语义搜索快速入门
- Elasticsearch:什么是检索增强生成 - RAG?
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
opics/618668825)
- Elasticsearch:多语言语义搜索
- Elasticsearch:使用 huggingface 模型的 NLP 文本搜索
- Elasticsearch:使用 Langchain 和 OpenAI 进行问答
- Elasticsearch:使用 LangChain 对话链和 OpenAI 的聊天机器人
- Elasticsearch:语义搜索快速入门
- Elasticsearch:什么是检索增强生成 - RAG?
[外链图片转存中…(img-X05bFNEX-1715550177495)]
[外链图片转存中…(img-bz36s4Ls-1715550177495)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!