既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新
需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)
上段代码就是模拟生成一个序列。原始信号由三个正弦信号和一个直流信号叠加而成,频率分别是10Hz、40Hz和80Hz,峰值分别为1、3、5,直流分量为1。 通过测试,可以发现,系统计算4096点的傅里叶变换需要的时间仅仅只要2.71ms,可见其速度是非常快。在傅里叶变换的输出中,我们可以发现只有在Outputbuf[0]、Outputbuf[1]、Outputbuf[4]、Outputbuf[8]处傅里叶变换的结果分别为4096、2048、6144、10240;Outputbuf[4088]、Outputbuf[4092]、Outputbuf[4095]处的值分别为10240、6144、2048。下面来分析这些结果。
模拟的采样频率为40960Hz,采样的点数为4096,由数字信号处理知识可知,分辨率为10Hz,也即傅里叶变换计算后的频谱之间的间隔是10Hz。而Inputdata[2\*i]=1+1\*arm\_sin\_f32(2\*PI\*10\*i/Fs)+3\*arm\_sin\_f32(2\*PI\*\*40\*i/Fs)+5\*arm\_sin\_f32(2\*PI\*80\*i/Fs)。可知待测信号由三个正弦信号和一个直流信号叠加而成,频率分别是10Hz、40Hz和80Hz,峰值分别为1、3、5,直流分量为1。
因为A/D采样后的时序信号为实信号,根据DFT的对称性可知,其傅里叶变换的结果具有共轭反对称性。Outputbuf[1]和Outputbuf[4095],Outputbuf[4]和Outputbuf[4092],Outputbuf[8]和Outputbuf[4088]幅值应该相同,实际情况再次和理论值完全相同。
根据DFT变换后的性质可知:Outputbuf[0]=4096,其傅里叶变换变换后的模值刚好是原始信号的4096倍,所以值为4096.0;而在其它频率点处,模值应该是幅值的4096/2=2048倍,输出的结果刚好为Outputbuf[1]=4096、Outputbuf[4]=2048、Outputbuf[8]=6144与理论值完全相同,可见傅里叶变换运算的精度极高,运算速度极快。
**下面我们用Matlab验证算法的正确性:**
Matlab 程序:
close all; %Turn off all the pictures
clc;
DC=1; %The magnitude of the dc signal
Amp1=1; %The amplitude of the first signal
Amp2=3; %The amplitude of the second signal
Amp3=5; %The frequency of the third signal
Fre1=10;%The frequency of the first signal )
Fre2=40;%The frequency of the Second signal
Fre3=80;%The frequency of the third signal
Fs=40960; %The sampling frequency
N=4096; %The sampling points
t=[0:1/Fs:1]; %Sampling time
S=DC+Amp1sin(2piFre1t)+Amp2sin(2piFre2t)+Amp3sin(2piFre3t); %信号
%Display the original signal
subplot(3,1,1);
plot(S,‘b’);
grid on;
xlabel(’ Frequency/HZ’);
ylabel(‘Voltage’);
title(‘The original signal’);
Y = fft(S,N); %Do FFT transform
Module = (abs(Y)); %:Acquire modulus
subplot(3,1,2);
F=([1:N]-1)*Fs/N;
h = stem(F(1:N/320)/10,Module(1:N/320),‘fill’,‘–’);
set(get(h,‘BaseLine’),‘LineStyle’,‘:’)
set(h,‘MarkerFaceColor’,‘red’)
grid on;
xlabel(’ FFTout[i]‘);
ylabel(‘FFT module’);
title(‘the module value of FFT’);
Module=Module/(N/2);
Module(1)=Module(1)/2;
F=([1:N]-1)*Fs/N;
subplot(3,1,3);
h = stem(F(1:N/320),Module(1:N/320),‘fill’,’–‘);
set(get(h,‘BaseLine’),‘LineStyle’,’:‘)
set(h,‘MarkerFaceColor’,‘red’)
grid on;
xlabel(’ Frequency /HZ’);
ylabel(‘Voltage’);
title(‘Amplitude - frequency curves’);
Matlab运行的结果如下所示:
![](https://img-blog.csdn.net/20150607144753530?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaGR1eGllanVu/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center)
图1 FFT仿真结果
从Matlab仿真出来的结果和理论的结果完全一样。图一为原始的信号,原始信号由三个正弦信号和一个直流信号叠加而成,频率分别是10Hz、40Hz和80Hz,峰值分别为1、3、5,直流分量为1。图二为输入信号进行FFT运算后的输出结果,可以看出在FFTout[1]、FFTout[4]、FFTout[8]处有值,且值得大小和输入信号的幅度有关。图三为将模值化为实际电压值后的结果,可以看出其分别在频率0Hz、10Hz、40Hz、80Hz处的幅值分别为1、1、3、5。
注意事项:
* 输入音乐信号可以是电脑、iPad、手机等音频信号,但是不可接直接将音频信号送入STM32的IO口,负的电平可能直接烧坏STM32的内部AD,因此需要做适当的信号调理电路,对输入的音乐信号进行放大、电平抬升等。
![img](https://img-blog.csdnimg.cn/img_convert/5844c279321032d8b2dfe1eaf4febe4f.png)
![img](https://img-blog.csdnimg.cn/img_convert/8778ec5254ff887529b9c51589d20f55.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新**
**需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)**
**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618679757)**
视频,并且后续会持续更新**
**需要这些体系化资料的朋友,可以加我V获取:vip1024c (备注嵌入式)**
**[如果你需要这些资料,可以戳这里获取](https://bbs.csdn.net/topics/618679757)**