既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上物联网嵌入式知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、电子书籍、讲解视频,并且后续会持续更新
2.9 京东云:智慧供应链商家开放平台
京东云旗下的一款产品,网址:https://ysc.jd.com/login
将行业领先的供应链管理理念,结合京东YAIR(Y AI Platform for Retail)零售行业人工智能平台提供的大数据和算法能力平台化、产品化,通过提供精细化、智能化、自动化库存决策产品,为商家提供最优库存管理决策支持,将更专业的智慧供应链全链路解决方案开放赋能
2.10 观远数据
本节来自文档《新锐品牌数字化增长白皮书20210108 》
品牌需汇集多方数据并进行有效分析,提升供应链柔性与敏捷度,提前预测备货配货目标,使销售端到供应端全线协同,减少库存成本,完善履约交付能力,最大程度提升品牌效益
货,如战场中的“弹药”,是消费者与品牌方之间最重要的“触点”。对商品精细化的管理和分析,使品牌可以不
断优化和迭代商品质量、设计、功能、颜值等关键因素,以提升商品对消费者的吸引力,并精准指导后端生产。
2.11 云恋科技:物流控制塔(EPLD)
网址:http://www.cloudlinkscm.com/product/epld
参考文档:https://marketplace.huaweicloud.com/contents/0c50b438-4c89-40cf-9d88-8df67b528c94
物流控制塔(EPLD)是跨组织、端到端的供应链管控平台,以供应链控制塔为核心,提供从采销订单到物流计划优化再到海陆空铁物流执行的全链全渠道一体化解决方案,打造供应链协同能力,帮助客户实现供应链全程透明化、管理精细化。
功能架构:
技术架构:
看板设计:
3 库存管理 、配补货、清滞
3.1 京东:AI驱动 端到端补货技术实践
文章[2]提到京东实现全链条的最优化,我们大部分工作可以归为三类:
- 第一类是预测类工作,是各类决策和规划的基础。
在整个自营的供应链中,最核心的就是如何去预测出未来的销量。因为知道未来销量,才能决定什么样的时机采购。针对销量预测,我们做的非常成熟。 - 第二类是布局优化能力。
我们布局优化的能力是非常充足的。因为优化能力可以帮我们提供更好的决策,比如像在补货场景下,在什么时机进多少量,是一个非常明确的运筹优化类问题。 - 第三类是仿真平台
对于任何一个算法,在落地上线之前,都要做一轮详细的评估。仿真平台是我们完成上线前最后一轮准备的载体。
900万的商品中爆品并不多,多数都是常规品,产品本身从预测到补货都很难。在预测不确定性很大的情况下,如何通过补货模型做兜底,给出很好的效果,是一个有非常挑战的问题。
想把补货做好,一定要把库存拆解得更加清晰,针对不同的库存层次,匹配不同补货策略和模型算法。目前我们主要是基于安全库存模型,对现有的库存进行拆解。基于库存模型拆解:
- 首先是周转库存:周转库存在理想情况,只需要覆盖两次补货间隔的量就可以。但是很多时候由于供需的不稳定性,供给会发生很大的变化,需求波动也很大,如果只备周转库存,会造成断货的风险。
- 其次是安全库存:为了避免周转库存引起的断货风险,引入了安全库存,满足消费者的需求。比如不同的安全库存就对应着不同的服务水平,比如现货率达到97%,增加的安全库存要远大于95%的水平。
- 最后是策略库存:除了周转和安全库存之外,还有一些策略库存。策略库存是应对一些特殊场景的,比如大促备货场景,像618和双11期间,整个节奏受到供应商产能的影响非常大,也会受物流入库的产能限制。很难在618和双11前几天把货采进来,这个情况下,就要有节奏地把货引入进来,这部分库存就是策略库存。它的量级往往是非常大的,为优化周转带来了很大挑战。
为了应对这种挑战,目前我们引入两种常见的补货策略:
第一类是常规补货
常规补货更多的服务于安全库存和周转库存。在这个过程中需要做两类工作:基于预测的不确定性,推荐出合理的库存水位,然后基于合理的库存水位匹配出对应的参数。在参数推荐过程中,目前我们会使用运筹的优化模型给出参数。比如要达到一定的库存水位,不同的商品要给出不同的参数建议,备货天数是多少,服务水平是多少。通过常规补货的参数模型,我们实现了70%的非常高的自动化水平。
第二类是大促补货
大促补货是一个非常特殊的场景,因为它的量在某一个时间点爆发得非常大。在这种情况下,我们会基于预测、业务进销存计划、物流产能和供应商产能,在长周期下把入库节奏和数量做一个拆解。这里的难点有以下几个:
- 第一个是销售预估,我们预测团队针对大促期间的销售做了很多的模型优化,从去年到今年618上线,新的大促预测上线后,整个计划的达成度就有了大幅提升。
- 第二是入库节奏的匹配,这一块更多是和物流测的联动。
另外很多时候业务会做计划调整,这种情况下对大促备货的输出结果会产生很大的影响。目前通过两轮试点,我们解决了主要的挑战。从目前跟进的效果来看,采纳率和自动化执行效率是非常高的,大促备货的采纳率在80%以上,自动化率维持在60%以上。
3.2 杉数科技 库存优化与调拨 方案
内容节选来自,杉数科技的王曦在 datafunSummit 工业数据科学论坛的讲座内容
根据产品特性及销量特征设计差异化的安全库存模型及补货策略模型;兼顾服务水平和周转效率等指标表现,实现智慧多级库存计划管理。同时,针对仓端/门店的缺货、积压与销量波动,生成日常补货和调拨计划,实现灵敏的执行层面优化。
差异化补货与安全库存策略:
多级库存网络优化解决方案
其在小米全渠道智能一级&二级分货优化:
将全局补货的逻辑抽象成智能算法模型:
3.3 阿里云:智能供应链解决方案
节选自【中国技术开放日】的讲座《阿里智慧供应链中台2.0》
库存管理模型:
整个库存管理的预测流程介绍:
关于新品预测的流程:
整个库存管理的算法预测平台: