【一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义】
**开源地址:https://docs.qq.com/doc/DSmxTbFJ1cmN1R2dB **
-
match
:根据一个字段查询 -
multi_match
:根据多个字段查询,参与查询字段越多,查询性能越差
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
-
term
:根据词条精确值查询 -
range
:根据值的范围查询
3.1 term查询
因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询
GET /indexName/_search
{
“query”: {
“term”: {
“FIELD”: {
“value”: “VALUE”
}
}
}
}
例子:
#term查询
GET /hotel/_search
{
“query”: {
“term”: {
“city”: {
“value”: “上海”
}
}
}
}
3.2 range查询
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询
GET /indexName/_search
{
“query”: {
“range”: {
“FIELD”: {
“gte”: 10, // 这里的gte代表大于等于,gt则代表大于
“lte”: 20 // lte代表小于等于,lt则代表小于
}
}
}
}
示例:
#range查询
GET /hotel/_search
{
“query”: {
“range”: {
“price”: {
“gt”: 249,
“lte”: 300
}
}
}
}
所谓的地理坐标查询,其实就是根据经纬度查询
常见的使用场景包括:
-
携程:搜索我附近的酒店
-
滴滴:搜索我附近的出租车
-
微信:搜索我附近的人
4.1 矩形范围查询
矩形范围查询:也就是geo_bounding_box
查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询
GET /indexName/_search
{
“query”: {
“geo_bounding_box”: {
“FIELD”: {
“top_left”: { // 左上点
“lat”: 31.1,
“lon”: 121.5
},
“bottom_right”: { // 右下点
“lat”: 30.9,
“lon”: 121.7
}
}
}
}
}
4.2 附近查询
附近查询:也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询
GET /indexName/_search
{
“query”: {
“geo_distance”: {
“distance”: “15km”, // 半径
“FIELD”: “31.21,121.5” // 圆心
}
}
}
例子:
我们先搜索陆家嘴附近15km的酒店:
发现共有47家酒店,然后把半径缩短到3公里:
可以发现,搜索到的酒店数量减少到了5家。
复合查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
-
fuction score
:算分函数查询,可以控制文档相关性算分,控制文档排名 -
bool query
:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
5.1 相关性算分(了解)
当我们利用match
查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 “虹桥如家”,结果如下:
[
{
“_score” : 17.850193,
“_source” : {
“name” : “虹桥如家酒店真不错”,
}
},
{
“_score” : 12.259849,
“_source” : {
“name” : “外滩如家酒店真不错”,
}
},
{
“_score” : 11.91091,
“_source” : {
“name” : “迪士尼如家酒店真不错”,
}
}
]
在elasticsearch
中,早期使用的打分算法是TF-IDF
算法,公式如下:
在后来的5.1版本升级中,elasticsearch
将算法改进为BM25
算法,公式如下:
TF-IDF 算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而 BM25 则会让单个词条的算分有一个上限,曲线更加平滑:
小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:
-
TF-IDF
算法 -
BM25
算法,elasticsearch5.1版本后采用的算法
5.2 算分函数查询
根据相关度打分是比较合理的需求,但有时候也不能够满足我们的需求。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁给的钱多排名就越靠前:
(1)function score
要想认为控制相关性算分,就需要利用elasticsearch中的function score
查询了。
function score
查询中包含四部分内容:
-
原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
-
过滤条件:filter部分,符合该条件的文档才会重新算分
-
算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数:
-
weight:函数结果是常量
-
field_value_factor:以文档中的某个字段值作为函数结果
-
random_score:以随机数作为函数结果
-
script_score:自定义算分函数算法
-
运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
-
multiply:相乘
-
replace:用function score替换query score
-
其它,例如:sum、avg、max、min
function score
的运行流程如下:
-
根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
-
根据过滤条件,过滤文档
-
符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
-
将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分
因此,其中的关键点是
-
过滤条件:决定哪些文档的算分被修改
-
算分函数:决定函数算分的算法
-
运算模式:决定最终算分结果
(2)例子
需求:给“如家”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
-
原始条件:不确定,可以任意变化
-
过滤条件:brand = “如家”
-
算分函数:可以简单粗暴,直接给固定的算分结果,weight
-
运算模式:比如求和
因此最终的DSL语句如下:
GET /hotel/_search
{
“query”: {
“function_score”: {
“query”: { … }, // 原始查询,可以是任意条件
“functions”: [ // 算分函数
{
“filter”: { // 满足的条件,品牌必须是如家
“term”: {
“brand”: “如家”
}
},
“weight”: 2 // 算分权重为2
}
],
“boost_mode”: “sum” // 加权模式,求和
}
}
}
测试,在未添加算分函数时,如家得分如下:
添加了算分函数后,如家得分就提升了:
5.3 布尔查询
(1)定义
布尔查询:是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有
-
must
:必须匹配每个子查询,类似“与” -
should
:选择性匹配子查询,类似“或” -
must_not
:必须不匹配,不参与算分,类似“非” -
filter
:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤: