完全二叉树使用场景:
根据前面的学习,我们了解到完全二叉树的特点是:“叶子节点的位置比较规律”。因此在对数据进行排序或者查找时可以用到它,比如堆排序就使用了它,后面学到了再详细介绍。
二叉查找树
二叉树的提出其实主要就是为了提高查找效率,比如我们常用的 HashMap
在处理哈希冲突严重时,拉链过长导致查找效率降低,就引入了红黑树。
我们知道,二分查找可以缩短查找的时间,但是它要求 查找的数据必须是有序的。每次查找、操作时都要维护一个有序的数据集,于是有了二叉查找树这个概念。
二叉查找树(又叫二叉排序树),它是具有下列性质的二叉树:
-
若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
-
若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
-
左、右子树也分别为二叉排序树。
如下图所示:
也就是说,二叉查找树中,左子树都比节点小,右子树都比节点大,递归定义。
根据二叉排序树这个特点我们可以知道:二叉排序树的中序遍历一定是从小到大的。
比如上图,中序遍历结果是:
1 3 4 6 7 8 10 13 14
二叉排序树的性能
在最好的情况下,二叉排序树的查找效率比较高,是 O(logn),其访问性能近似于折半查找;
但最差时候会是 O(n),比如插入的元素是有序的,生成的二叉排序树就是一个链表,这种情况下,需要遍历全部元素才行(见下图 b)。
如果我们可以保证二叉排序树不出现上面提到的极端情况(插入的元素是有序的,导致变成一个链表),就可以保证很高的效率了。
但这在插入有序的元素时不太好控制,按二叉排序树的定义,我们无法判断当前的树是否需要调整。
因此就要用到平衡二叉树(AVL 树)了。
平衡二叉树
平衡二叉树的提出就是为了保证树不至于太倾斜,尽量保证两边平衡。因此它的定义如下:
-
平衡二叉树要么是一棵空树
-
要么保证左右子树的高度之差不大于 1
-
子树也必须是一颗平衡二叉树
也就是说,树的两个左子树的高度差别不会太大。
那我们接着看前面的极端情况的二叉排序树,现在用它来构造一棵平衡二叉树。
以 12 为根节点,当添加 24 为它的右子树后,根节点的左右子树高度差为 1,这时还算平衡,这时再添加一个元素 28:
这时根节点 12 觉得不平衡了,我左孩子一个都没有,右边都有俩了,超过了之前说的最大为 1,不行,给我调整!
于是我们就需要调整当前的树结构,让它进行旋转。
因为最后一个节点加到了右子树的右子树,就要想办法给右子树的左子树加点料,因此需要逆时针旋转,将 24 变成根节点,12 右旋成 24 的左子树,就变成了这样(有点丑哈哈):
这时又恢复了平衡,再添加 37 到 28 的右子树,还算平衡:
最后
分享一份NDK基础开发资料
分享内容包括不限于高级UI、性能优化、架构师课程、NDK、混合式开发(ReactNative+Weex)微信小程序、Flutter等全方面的Android进阶实践技术;希望能帮助到大家,也节省大家在网上搜索资料的时间来学习,也可以分享动态给身边好友一起学习!
tive+Weex)微信小程序、Flutter等全方面的Android进阶实践技术;希望能帮助到大家,也节省大家在网上搜索资料的时间来学习,也可以分享动态给身边好友一起学习!