生成情感倾向文本
该模型是生成式模型,所以能够同样的用于生成Amazon评论文本。可以通过简单的覆盖情感神经元的值即可生成有倾向性的文本。
|–|–|
|Sentiment fixed to positive|Sentiment fixed to negative|
|Best hammock ever! Stays in place and holds its shape. Comfy (I love the deep neon pictures on it), and looks so cute.|They didn’t fit either. Straight high sticks at the end. On par with other buds I have. Lesson learned to avoid.|
|Just what I was looking for. Nice fitted pants, exactly matched seam to color contrast with other pants I own. Highly recommended and also very happy!|The package received was blank and has no barcode. A waste of time and money.|
本方法使用的是multiplicative LSTM模型,主要的原因就是它比普通的LSTM模型更容易收敛。在Amazon评价语料库上训练使用了4096个单元。
为什么情感倾向判断的准确度高依然未知。读者可以尝试着训练一个自己的模型并做一些实验,作者的训练花了大概一个月时间。
推特與情分析
推特上的與情分析是一个很有力的工具,人们对某个商业品牌的评价,分析营销活动的影响,竞选活动中希拉里和川普在大众中的评价。
SemEval 2017
推特與情分析不仅受到了NLP领域的广大研究者的关注,也受到政治家和社会活动家的关注。因此从2013年开始,SemEval提出了对应的任务-情感分析。
今年,有48支队伍参与这项任务。今年的5个任务为:
1.子任务A:给定一条推文,判断积极、消极、平和三种情感。
2.子任务B:给定一条推文和一个主题,将主题判断为积极或者消极。
3.子任务C:给定一条推文和一个主题,将推文分为:强烈的积极、轻微的积极、平和、轻微的消极、强烈的消极。
4.子任务D:给定关于某个主题的推文,评估这些推文在消极和积极的分布。
5.子任务E:给定关于某个主题的推文,评估这些推文在强烈的积极