每日一道leetcode

714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)

题目

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:  
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

思路

  1. 到达每一天的时候有两种状态:持有、未持有。对于不同状态可以做的决策有:
    1. 持有:继续持有或者卖出。
    2. 未持有:忽略或者买入。
  2. 那么我们就只用考虑状态转移和初始状态的设置:
    1. 首先是初始状态的设置:在第一天(即下标为0)的时候,可以选择持有(0)(买入)或者不持有(1)(忽略),如果买入的话则需将买入价提前更新进来,如果不持有则保持为0,所以dp[0][0] = -prices[0], dp[0][1] = 0.
    2. 然后是状态转移,到达新的一天,也可能存在持有和未持有两个状态,分别由以下情况转移而来:
      1. 持有:之前买入了,本轮不做交易。
      2. 持有:之前未持有,本轮买入。
      3. 未持有:之前未持有,本轮不做交易。
      4. 未持有:之前买入持有了,本轮卖出。
    3. 那么状态转移方程就是:
      1. dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i]);
      2. dp[i][1] = max(dp[i-1][0] + prices[i] - fee, dp[i-1][1]);
  3. 每轮都选择前驱可达的最优状态,循环结束后输出最后未持有的状态的值即可(如果有的赚肯定最后要卖,要么就是一直没买,最后肯定是不持股的)。

代码实现

class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        int dp[n][2];
        // 0 持有 1 未持有
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]);
            dp[i][1] = max(dp[i-1][0]+prices[i]-fee, dp[i-1][1]);
        }
        return dp[n-1][1];
    }
};

复杂度分析

  • 时间复杂度:O(n)。
  • 空间复杂度:O(n)。

官方题解

  • 官解还有一种空间复杂度降为O(1)的贪心算法,也看看当锻炼思维了(因为我感觉我不一定能自己想到贪心策略)。
  • 这其中的一半的思路也是我一开始觉得能用贪心的原因,而后一半思路则是我放弃贪心重新开始dp的原因orz。
  • 首先是核实买入的问题,不妨就将手续费直接在买入的时候计算,而不是等卖出再计算(可能题目没有明说手续费产生的时间也是这个原因),那么第一天的花费就可以定义为buy = prices[0]+fee,而卖出的时候就是更新profit += prices[i] - buy。
  • 好了,那么什么时候更新什么时候不更新呢?
  • 就是当prices[i]+fee小于buy的时候,应该推迟买入,因为晚点买入价格会更低,开销更小。
  • 而卖出这一步就有点意思了:
    • 官解给出的第一步思路是如果当前的价格已经超过买入价了,就应该开始考虑卖出,但是可能存在价格还没到顶的情况,所以需要另外设计逻辑来允许做一次反悔。
    • 因为如果未到最高点卖出在买入的话,实际亏掉的是手续费,那么不妨在每次卖出的时候先收米,然后将买入价定为buy = prices[i],而不需要加fee,这样相当于就是先分红继续持有了,那么如果后一天更高的话,prices[i+1]-buy就是两者的价差。如果后一天走低了,但没低的超过手续费,那么继续观望保留反悔机会,如果后续升高了肯定就继续吃利润,如果持续走低使得降幅已经高于买入价-手续费了,那么就那个利润就吃下直接抛了(直接更新买入价)。如果走低过多亏的比那手续费还多那就赶紧卖了重新买入低价。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值