第四章:生成对抗网络(GAN)
1. 背景介绍
生成对抗网络(GAN)是深度学习领域的一项革命性创新,自2014年由Ian Goodfellow等人提出以来,它已经在图像生成、语音合成、数据增强等多个领域展现出了巨大的潜力。GAN的核心思想是通过两个神经网络——生成器(Generator)和判别器(Discriminator)的对抗过程,来学习生成数据的分布。这种方法的独特之处在于它不仅能生成高质量的数据,还能通过对抗过程提升模型的泛化能力。
2. 核心概念与联系
GAN的基本框架包括两部分:生成器和判别器。生成器的目标是产生尽可能接近真实数据的假数据,而判别器的目标是区分输入是真实数据还是生成器产生的假数据。这两个网络在训练过程中相互竞争,生成器不断学习如何生成更真实的数据,而判别器则不断学习如何更好地识别数据的真伪。这个过程可以类比于警察与伪钞制造者的博弈。
3. 核心算法原理具体操作步骤
GAN的训练过程可以分为以下几个步骤:
- 随机生成噪声数据。
- 将噪声数据输入生成器,生成假数据。
- 将真实数据和假数据混合后输入判别器。
- 判别器对输入数据进行真伪分类。
- 根据判别器的分类结果,