EM算法原理与代码实战案例讲解

1. 背景介绍

1.1 极大似然估计的困境

在机器学习和数据挖掘领域,我们经常需要从数据中估计模型的参数。一个常用的方法是极大似然估计 (MLE, Maximum Likelihood Estimation)。MLE 的核心思想是找到一组参数,使得观测数据的可能性最大。然而,在许多实际问题中,我们无法直接观测到所有变量,例如在混合模型中,我们只能观测到混合后的数据,而无法知道每个样本来自哪个分布。这种情况下,直接使用 MLE 就会遇到困难。

1.2 EM算法的引入

为了解决 MLE 在隐变量问题上的困境,Dempster 等人在 1977 年提出了期望最大化算法 (EM, Expectation-Maximization Algorithm)。EM 算法是一种迭代算法,它通过迭代地进行两个步骤来估计模型参数:

  • E 步 (Expectation step): 根据当前的参数估计,计算隐变量的期望。
  • M 步 (Maximization step): 基于隐变量的期望,最大化似然函数,得到新的参数估计。

EM 算法能够有效地解决隐变量问题,并在许多领域得到广泛应用,例如混合模型、隐马尔可夫模型、主题模型等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值