1整数的可除性——北邮《信息安全数学基础》

一、整数的概念

1、整除定义

设 a, b 是任意两个整数,其中 b \neq 0 。如果存在一个整数 q,使 a = bq 成立,称 b 整除 a,或者 a 被 b 整除,记作 b|a,并把 b 叫作 a 的因数,a 叫作 b 的倍数。这时,q 也叫 a 的因数,将 q 写作 a/b 或 \frac{a}{b}。否则,记作 a\nmidb。

注:

(1)当 b 遍历 a 的所有因数时,-b 和 a/b 也遍历 a 的所有因数。

(2)0是任何非零整数的倍数。

(3)1是任何整数的因数

(4)任何非零整数 a 是其自身的倍数,也是其自身的因数。

(5)设 a,b 为整数,若b|a,则b|(-a),(-b)|a,(-b)|(-a) 。

        证:设 b|a,则存在整数 q 使得 a = bq。 因而 (-a) = b(-q),a = (-b)(-q),(-a) = (-b)q;
                因为 -q,q 都是整数,所以根据整除的定义,我们有 b|(-a), (-b)|a,(-b)|(-a)。

2、定理

(1)传递性

设 a,b,c \neq 0 是三个整数,若 c|b,b|a,则 c|a。

(2)在加法与减法运算中,整除的性质是保持的

设 a,b,c \neq 0 是三个整数,若 c|a,c|b,则 c|a \pm b。

(3)在整数的线性组合中,整除的性质是保持的

设 a,b,c \neq 0 是三个整数,若 c|a,c|b,则对任意整数 s,t,有 c|sa \pm tb。

(4)多个整数的线性,整除的性质是保持的

若整数 a1,..., an 都是整数 c \neq 0 的倍数,则对任意 n 个整数 s1,..., sn,整数 s1*a1 +...+ sn*an 是 c 的倍数。

(5)设 a,b 都是非零整数,若 a|b,b|a,则a = \pm b。

3、素数定义

设整数 n \neq 0,\pm1,如果除了显然因数 \pm1,\pmn 外,n没有其他因数,那么 n 叫做素数/质数/不可约数。否则,n 叫做合数。

4、定理

(6)n 是一个正合数,p 是 n 的一个大于1 的最小正因数。则 p 一定是素数且 p \leqslant \sqrt{n}

        证明:(反证法)

                若 p 不是素数则 qIp,
                而 p|n 则由定理(1) 知,q|n 这与 p 为最小正因数矛盾,
                所以 p 是素数。
                因为 n 是合数,则 n = pn_{1} 其中1 < P ≤ n_{1} < n
                因此, p^{2}\leqslant n , 故  p\leqslant \sqrt{n}

        素数是乘法的最小单元,并且整数可以表示成素数的乘积。

(7)设 n 是一个正整数,如果对所有的素数 p \leqslant \sqrt{n},都有 p\nmidn,则 n 一定是素数。

5、平凡除法 (Eratosthenes筛法)

例题1. 求出所有不超过 N = 100 的素数。

解:因为 N = 100,所以不大于 \sqrt{100} = 10 的所有素数为 2,3,5,7,所以依次删去 2,3,5,7 的倍数,余下的即为所有不超过 N = 100 的素数。列表解答如下:

6、定理

(8)素数有无穷多个。

        证明:(反证法)

                假设有有限个素数,他们为 p_{1},p_{2},...,p_{k}

                考虑 n= p_{1}*p_{2}*...*p_{n}+1,所以 n一定是合数(因为素数有限,n 又不是 p_{1},p_{2},...,p_{k} 中的任何一个)。

                根据定理(6),n 的大于 1 的最小正因数 p 是素数。

                因此,p 是 p_{1},p_{2},...,p_{k} 中的一 个。

                又由定理(3),我们有 p\mid n-p_{1}*p_{2}*...*p_{n}=1,这显然不可能。

                所以素数有无穷个。

(9)欧几里得除法

设 a,b > 0 是两个整数,则存在唯一的整数 q,r 使得 a = bq + r,0 ≤ r < b。

(证明包括存在性和唯一性两个部分,具体可以参考教材P6,在此不进行过多阐述)

注:① q 叫做不完全商

       ② r 叫做余数

       ③ b\mid a\Leftrightarrow r=0

7、素数的平凡判别法

例题2. 证明 137 是素数。

证:小于等于\sqrt{137}<12 的所有素数为 2,3,5,7,11

       由于2\nmid 137,3\nmid 137,5\nmid 137,7\nmid 137,11\nmid 137

       所以 137 是素数。

(!!!素数的判断,一定要掌握,考试应该是必考的!!!)

8、定理 

(10)设 a,b > 0 是两个整数,则对任意整数 c,存在唯一的整数 q,r 使得 a = bq + r,c ≤ r < b + c。

例题3. 

b = 7b = 8
最小非负余数0,1,2,3,4,5,60,1,2,3,4,5,6,7
最小正余数1,2,3,4,5,6,71,2,3,4,5,6,7,8
最大非正余数0,-1,-2,-3,-4,-5,-60,-1,-2,-3,-4,-5,-6,-7
最大负余数-1,-2,-3,-4,-5,-6,-7-1,-2,-3,-4,-5,-6,-7,-8
绝对值最小余数-3,-2,-1,0,1,2,3

-3,-2,-1,0,1,2,3,4或

-4,-3,-2,-1,0,1,2,3

二、最大公因数与广义欧几里得除法

1、最大公因数定义

设 a_{1}...a_{n} 是 n(n ≥ 2) 个整数,若整数 d 是它们每一个的因数,那么 d 就叫 a_{1}...a_{n} 的一个公因数。那么,最大的 d 叫做最大公因数,记作 (a_{1},...,a_{n})

(a_{1},...,a_{n})=1 \Leftrightarrow a_{1}...a_{n} 互素/互质。

注:

(1)(b,a)=(a,b)

(2)b\mid a\Rightarrow (a,b)=b

(3)p 是素数,a 是整数,p\nmid a\Rightarrow (a,p)=1

        证明:设( p, a ) =d 则 d|p,d|a。由于 p 是素数,那么 d = 1 或 d = p。

                   当 d = p 时, p|a 与 p\nmid a 相矛盾,那么 d = 1 , 即( p, a ) = 1,p 与 a 与互素。

2、定理

(1)(a,b)=(a,-b)=(-a,b)=(\left | a \right |, \left | b\right |)

(2)设 b 是任一正整数,则(0,b)=b

(3)设 a,b,c 是三个不全为 0 的整数,如果 a = bq + c,则(a,b)=(b,c)

        例题1. 

                因为1859 = 1*1573 + 286,则(1859, 1573) = (1573, 286)
                因为1573 = 5*286 + 143,则(1573, 286) = (286, 143) = 143

3、求(a,b)

例题2. a = -169,b = 121,求(a,b)

解:(-169, 121) = (169, 121) = (121, 48) = (48, 25) = (25, 23) = (23, 2) = (2, 1) = 1

(!!!求最大公因数,一定要掌握,考试必考,接下来的贝祖等式也要用到!!!)

4、贝祖等式

设 a,b 是任意两个正整数,则存在整数 s,t 使得 s*a + t*b = (a , b)

例题3. 设 a = 169,b = 121,求 s,t 使得 s*a + t*b = (a , b)。

解:(a , b) = (169 , 121) = (121 , 48) = (48 , 25) = (25 , 23) = (23 , 2) = (2 , 1) = 1

       那么有,1 = 2 - 1 × 1
                         = 2 - 1 × (23 - 11 × 2)
                         = -1 × 23 + 12 × 2
                         = -1 × 23 + 12 × (25 - 1 × 23)
                         = 12 × 25 - 13 × 23
                         = 12 × 25 - 13 × (48 - 1 × 25)
                         = 25 × 25 - 13 × 48
                         = 25 × (121 - 2 × 48) - 13 × 48
                         = 25 ×121 - 63 × 4
                         = 25 ×121 - 63 × (169 - 1 × 121)
                         = 88 ×121 - 63 × 169
        那么 s = -63,t = 88。

(!!!这个一定要会,后面求逆元也要用到!!!)

5、定理

(8)a,b 互素 \Leftrightarrow \exists s,t \ \ sa+tb=1

(9)(a,b)=d\Leftrightarrow 1)d\mid a ,d\mid b\ \ \ 2)e\mid a, e\mid b\Rightarrow e\mid d

(10)① (am,bm)=(a,b)m

           ② d\mid a,\ d\mid b\Rightarrow (\frac{a}{d},\frac{b}{d})=\frac{(a,b)}{\left | d \right |}  特别地  (\frac{a}{(a,b)},\frac{b}{(a,b)})=1

(11)(a,c)=1\Rightarrow (ab,c)=(b,c)

(12)(a_{i},c)=1\Rightarrow (a_{1}a_{2}...a_{n},c)=1

6、多个整数的最大公因数及计算

例题4. 计算 (120 , 150 ,  210 , 35)

解:(120 , 150) = (120 , 30) = 30
       (30 , 210 ) = 30
       (30, 35 ) = (30 , 5) = 5
       所以 (120 , 150 , 210 , 35) = 5

(!!!多个数的最大公因数的计算,一定要掌握,期末会考!!!)

三、整除的进一步性质及最小公倍数

1、定理

(1)c\mid ab, \ (a,c)=1\Rightarrow c\mid b

(2)p 是素数,若 p|ab 则 p|a 或 p|b。

(3)p 是素数,p\mid a _{1}a _{2}...a _{n}\Rightarrow p\mid a _{k},1\leqslant k\leqslant n

2、最小公倍数定义

设 a_{1},...,a_{n} 是 n 个整数,若 D 是这 n 个数的倍数,则 D 叫做这 n 个数的公倍数。那么最小的 D 叫做最小公倍数,记作\left [ a_{1},...,a_{n} \right ]

3、定理

(4)a\mid b,\ b\mid d\Rightarrow \left [ a,b \right ]\mid d

(5)\left [ a,b \right ]= \frac{ab}{(a,b)}

(6)\left [ a_{1} ,a_{2}\right ]=D_{2},\left [ D_{2} ,a_{3}\right ]=D_{3},...,\left [ D_{n-1} ,a_{n}\right ]=D_{n} \\ \Rightarrow \left [ a_{1},a_{2} ,...,a_{n}\right ]=D_{n}

(7)a_{i}\mid D\Rightarrow \left [a _{1},a_{2},...,a_{n} \right ]\mid D

4、最小公倍数计算

例题5. 计算 [120 , 150 ,  210 , 35]

解:\left [ 120,150 \right ]=\frac{120*150}{(120,150)}=600

       \left [ 600,210 \right ]=\frac{600*210}{(600,210)}=4200

       \left [4200,35 \right ]=\frac{4200*35}{(4200,35)}=4200

      所以 [120 , 150 ,  210 , 35] = 4200

四、素数的算术基本定理

(1)任一整数 n > 1 都可以表示成素数的乘积,且在不考虑乘积顺序的情况下,该表达式是唯一的。即 n=p_{1}...p_{s},\ \ p_{1}\leqslant ...\leqslant p_{s}

(2)n 的标准分解式:n=p_{1}^{\alpha _{1}}...p_{n}^{\alpha _{n}}

(3)n=p_{1}^{\alpha _{1}}...p_{n}^{\alpha _{n}},d 是 n 的正因数,当且仅当 d=p_{1}^{\beta _{1}}...p_{n}^{\beta _{n}}

(4)n 的因数个数 d(n)=(1+\alpha _{1})+...+(1+\alpha _{n})

(5)a=p_{1}^{\alpha _{1}}...p_{n}^{\alpha _{s}}b=p_{1}^{\beta _{1}}...p_{n}^{\beta _{s}},则

         (a,b)=p_{1}^{min(\alpha _{1},\beta _{1})}...p_{n}^{min(\alpha _{s},\beta _{s})}

         \left [a,b \right ]=p_{1}^{max(\alpha _{1},\beta _{1})}...p_{n}^{max(\alpha _{s},\beta _{s})}

例题1. 120=2^{3}*3*5,\ 150=2*3*5^{2},\ 210=2*3*5*7,\ 35=5*7

           (120,150,21,35)=2^{min(3,1,1,0)}*3^{min(1,1,1,0)}*5^{min(1,2,1,1)}*7^{min(0,0,1,1)}

           [120,150,21,35]=2^{max(3,1,1,0)}*3^{max(1,1,1,0)}*5^{max(1,2,1,1)}*7^{max(0,0,1,1)}

五、素数定理

\lim_{x \to \infty}\pi (x)\frac{lnx}{x}=1

六、总结

(1)素数判断

(2)最大公因数和最小公倍数的求法

(3)贝祖等式

以上这三个一定要熟练掌握!!!考试肯定会涉及到的。

此外,文章中涉及到的其他定义和定理也要理解掌握,一些定理的证明有时间也要看看。

感谢大家阅读!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值