2同余——北邮《信息安全数学基础》

一、同余的概念及基本性质

1、概念

正整数m,如果m|a-ba\equiv b(mod\ m)

2、定理

(1)a\equiv b(mod\ m)\Leftrightarrow a=b+km

(2)①自反性  a\equiv a(mod\ m)

         ②对称性 若a\equiv b(mod\ m)b\equiv a(mod\ m)

         ③传递性 若a\equiv b(mod\ m)b\equiv c(mod\ m)a\equiv c(mod\ m)

(3)a\equiv b(mod\ m)\Leftrightarrow a\%m=b\%m

(4)若a_{1}\equiv b_{1}(mod\ m),a_{2}\equiv b_{2}(mod\ m)

         则①a_{1}\pm a_{2}\equiv b_{1}\pm b_{2}(mod\ m)

            ②a_{1}a_{2}\equiv b_{1}b_{2}(mod\ m)

例、今天是星期五,那么2^{2023}天后时星期几?

解:2^{1}\equiv 2,2^{2}\equiv 2,2^{3=}= 8\equiv 2\ mod\ 7

       2003=667*3+2

       所以2^{2003}=(2^{3})^{667}*2^{2}\equiv 1^{667}*4\equiv 4\ mod\ 7

       故是星期三。

(5)n=a_{k}10^{k}+a_{k-1}10^{k-1}+...+a_{1}10+a_{0}

3|n\Leftrightarrow 3|a_{k}+...+a_{0}

9|n\Leftrightarrow 9|a_{k}+...+a_{0}

例、n=637693,因为6+3+7+6+9+3=30(就是把n每位上的数加起来),3\mid30,9\nmid 30,所以3\mid n,9\nmid n

(6)n=a_{k}1000^{k}+a_{k-1}1000^{k-1}+...+a_{1}1000+a_{0}

7(11,13)|n\Leftrightarrow 7(11,13)|(a_{0}+a_{2}+...)-(a_{1}+a_{3}+...)

例、n=75312289\Rightarrow a_{0}=289,a_{1}=312,a_{2}=75\Rightarrow(a_{0}+a_{2}) -a_{1}=52,7\nmid 52,11\mid 52,13\mid 52\Rightarrow 7\nmid n,11\mid n,13\mid n

(7)ad\equiv bd(mod\ m),(d,m)=1\Rightarrow a\equiv b(mod\ m)

(8)a\equiv b(mod\ m)\Rightarrow d>0,ad\equiv bd(mod\ m)

(9)a\equiv b(mod\ m),d|(a,b,m)\Rightarrow \frac{a}{d}\equiv \frac{b}{d}(mod\ \frac{m}{d})

(10)a\equiv b(mod\ m),d|m\Rightarrow a\equiv b(mod\ d)

(11)a\equiv b(mod\ m_{i}),i=1,2,...,k\Rightarrow a\equiv b(mod\ [m_{1},...,m_{k}])

(12)a\equiv b(mod\ m)\Rightarrow (a,m)=(b,m)

二、剩余类及完全剩余系

1、定理

(1)设m是一个正整数,则

①任一整数必包含在一个 Cr 中,0 ≤ r < m-1

C_{a}=C_{b}\Leftrightarrow a\equiv b(mod \ m)

C_{a}\cap C_{b}=\varnothing \Leftrightarrow a\not\equiv b(mod\ m)

2、定义

Ca叫做模m的a的剩余类。

一个剩余类中的任一数叫该类的剩余或代表元。

r_{0},...,r_{m-1}共m个整数,并且其中任何两个数都不在同一剩余类,则r_{0},...,r_{m-1}叫模m的一个完全剩余系。

3、定理

(2)r_{0},...,r_{m-1}是模m的一个完全剩余系\Leftrightarrow他们模m两两不同余

例、

最小非负完全剩余系0,1,...,m-1

最小正完全剩余系1,2,...,m

最大非正完全剩余系-(m-1),...,-1,0

最大负完全剩余系-m,...,-1

绝对值最小完全剩余系

                m偶        -m/2,-(m-2)/2,...,-1,0,1,...,(m-2)/2或 -(m-2)/2,...,-1,0,1,...,(m-2)/2,m/2

                m奇        -(m-1)/2,...,-1,0,1,...,(m-1)/2

(3)(a,m)= 1,若k是遍历模m的一个完全剩余系,则对于任意b,ak+b也是

(4)m1,m2互素,k1,k2分别遍历m1,m2的完全剩余系,则m2·k1+m1·k2遍历m1·m2

例、

例、m1 = 2,m2 = 5,求 k3 遍历 m1·m2

解:k3 = k1·m2 + k2·m1

故k3 = 0,2,4,6,8,5,7,9,1,3

三、简化剩余系与欧拉函数

1、欧拉函数

(1)定义

\varphi (m):m个正整数 0,1,...,m-1 中与m互素的整数个数。

注:p为素数,则\varphi (p)=p-1(!!!!这个很重要,经常会用到!!!!)

(2)定理

对于素数幂m=p^{\alpha },有\varphi (m)=p^{\alpha }-p^{\alpha -1}=m\prod_{p|m}^{}(1-\frac{1}{p})

2、简化剩余类与简化剩余系

(1)定义

一个模m的剩余类叫做简化剩余类,如果该类中存在一个与m互素的剩余,这时,简化剩余类中的剩余叫做简化剩余。

注:①简化剩余类的定义与剩余的选取无关

       ②两个简化剩余的乘积仍为简化剩余

(2)定理

r_{1},r_{2} 是同一模m剩余类的两个剩余,则 (r_{1},m)=1\Leftrightarrow (r_{2},m)=1

(3)定义

在模m的所有不同简化剩余类中,从每个类中任取一个数组成的集合,叫做模m的一个简化剩余系。

例、设正整数m,则:

最小非负完全剩余系 0,1,...,m-1中与m互素的整数

最小正完全剩余系 1,2,...,m中与m互素的整数

最大非正完全剩余系 -(m-1),...,-1,0中与m互素的整数

最大负完全剩余系 -m,...,-1中与m互素的整数

绝对值最小完全剩余系

                m偶        -m/2,-(m-2)/2,...,-1,0,1,...,(m-2)/2中与m互素的整数

                               或 -(m-2)/2,...,-1,0,1,...,(m-2)/2,m/2中与m互素的整数

                m奇        -(m-1)/2,...,-1,0,1,...,(m-1)/2中与m互素的整数

(4)定理

④若 (a,m) = 1,k 是遍历模 m 的一个简化剩余系,则 ak 也是。

例、

⑤若 (a,m) = 1,则存在一个 a',1 ≤ a' < m 使  aa'\equiv 1 (mod \ m)

证明:\because (a,m)=1, sa+tm=(a,m)=1 \therefore a'\equiv s(mod\ m)

(这个证明很重要!!!!a' 的求法就是用贝祖等式求 s 即为 a' )

例、已知 m = 737,a = 635,求 a'

解:

(737,635)=(635,102)=(102,23)=(23,10)=(10,3)=(3,1)=1\\ \\ 1\\=3-2*1\\=3-2*(10-3*3)\\=7*3-2*10\\=7*(23-2*10)-2*10\\=7*23-16*10\\=7*23-16*(102-4*23)\\=71*23-16*102\\=71*(625-6*102)-16*102\\=71*635-442*102\\=71*635-442*(737-1*635)\\=513*635-442*737\\\\ \therefore a'\equiv 513(mod\ 737)

(这个方法可能会有点麻烦,如果大家有更好的方法,欢迎大家在评论区留言)

⑥ (m1,m2) = 1,如果 k1, k2 分别遍历模 m1, m2 的简化剩余系,则 m2*k1 + m1*k2 遍历 m1*m2

3、欧拉函数性质

(1)(m,n)=1\Rightarrow \varphi (mn)=\varphi (m)\varphi (n)

(!!!!!这个公式超级超级超级无敌重要!!!!!)

需要注意的是,前提条件一定是 m, n 互素!!!!!

例、

\varphi (77)=\varphi (7*11)=\varphi (7)\varphi (11)=(7-1)(11-1)=60\\\\ \varphi (30)=\varphi (2)\varphi (3)\varphi (5)=1*2*4=8

(2) p, q 是不同素数,则 \varphi (pq)=\varphi(p) \varphi(q)=(p-1)(q-1)

四、三大定理

1、欧拉定理

(a,m)=1\Rightarrow a^{\varphi (m)}\equiv 1(mod\ m)

2、费马小定理

p为素数,有 a^{p}\equiv a(mod\ p) 

推论:p为素数,则 a^{t+k(p-1)}\equiv a^{t} (mod\ p)

3、Wilson定理

p为素数,则 (p-1)!\equiv -1(mod\ p)

例、计算 2^{20040118}(mod\ 7)

解:

2^{\varphi (7)}=2 ^{6}\equiv 1\\\\ 2 ^{3}=8\equiv 1\\\\^{} 2^{20040118}=2^{4+\square *6}\equiv 2^{4}=2^{3}*2\equiv 2\ mod\ 7

五、模重复平方计算法

计算b^{n}\ mod\ m

该计算法较为复杂且计算量巨大,考试是不许使用计算器的,所以考的可能不太大,但仍需了解,以备不时之需,一旦考了即使因数过大计算不出来,也可以把步骤写对,这样不会扣很多分。

六、总结

1、同余

同余的概念和一些定理在计算中也会用到,请掌握。

两个典型题为:

(1)今天是星期几,*****天后是星期几。

这种题解决办法有很多,请至少掌握一种。

(2)给一个数,问你能不能被3,9,7,11整除。

2、剩余类和剩余系

给你一个数,让你写出最小非负、最小正、最大非正、最大负、绝对值最小。

3、欧拉函数概念及性质

两个重要性质在计算中经常用到,请务必熟练,考试一定会涉及到。

4、三大定理

欧拉、费马小(尤其是推论)经常会用到,请一定要掌握,Wilson也有考的可能性,就一个简单的公式还是记住吧。需要注意的是,三大定理的证明也是考点,但由于篇幅有限和忙着课程就没有呈现,在此向大家抱歉,如果时间充足的话请自行翻阅教材查看证明过程,最好能自己证一遍,记忆会很深刻,也有助于对知识更深刻理解。

感谢大家的观看!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值