嵌入式 AI 硬件与软件生态
嵌入式 AI 结合了机器学习与低功耗计算设备,使得 AI 应用可以运行在资源受限的硬件上,如物联网(IoT)设备、机器人、智能相机等。本指南将介绍嵌入式 AI 的主要硬件平台及其软件生态。
1. 嵌入式 AI 硬件平台
嵌入式 AI 硬件通常包括 MCU(微控制器)、FPGA、GPU 和专用 AI 加速芯片(ASIC)。
1.1 MCU(微控制器)
MCU 适用于超低功耗 AI 任务,如传感器数据处理和简单神经网络推理。
常见 MCU 平台:
- ESP32(Espressif):适用于物联网(IoT)设备,支持 TensorFlow Lite for Microcontrollers。
- STM32(STMicroelectronics):广泛用于工业自动化,提供 X-CUBE-AI 工具包,支持 AI 模型部署。
- NXP i.MX RT:高性能 MCU,可运行 TinyML AI 推理。
MCU 相关软件生态:
- TensorFlow Lite for Microcontrollers(TFLM)