模型量化:8-bit/4-bit 量化、PTQ 与 QAT+案例

模型量化:8-bit/4-bit 量化、PTQ 与 QAT

1. 模型量化概述

模型量化(Quantization)是一种减少模型存储大小和计算复杂度的方法,通常用于嵌入式设备和边缘计算。量化的主要目标是用更低的精度(如 INT8 或 FP16)来表示模型权重和激活值,从而加速推理并降低存储需求。


2. 量化方法

2.1 8-bit/4-bit 量化(INT8、FP16)

  • FP16(半精度浮点数)

    • 使用 16-bit 浮点数代替 32-bit 浮点数。
    • 提供较小的模型存储需求,同时仍保持较高精度。
    • 适用于 GPU 和支持 FP16 的硬件(如 NVIDIA TensorRT)。
  • INT8(8-bit 整数量化)

    • 将 32-bit 浮点数转换为 8-bit 整数。
    • 可显著提高计算速度,特别适用于 CPU 和加速器(如 ARM、Edge TPU)。
    • 需要进行量化缩放(scale)和零点(zero-point)调整。
  • 4-bit 量化(INT4)

    • 进一步降低计算精度,用 4-bit 代替 8-bit。
    • 适用于超低功耗设备,但可能会损失较多精度。

2.2 训练后量化(Post-Training Quantization,PTQ)

  • 先训练全精度(FP32)模型。
  • 训练后使用量化技术转换权重和激活值。
  • 适用于计算能力有限的设备。
  • 主要方法:
    • 动态量化(Dynamic Quantization)
    • 静态量化(Static Quantization)
    • 整数(INT-only)量化

2.3 量化感知训练(Quantization-Aware Training,QAT)

  • 在训练过程中模拟量化效果。
  • 量化过程包含在前向传播和反向传播中,以减少量化误差。
  • 适用于高精度需求的边缘 AI 设备,如高端嵌入式处理器。

3. PyTorch 量化优化案例:MobileNetV2 量化

3.1 任务概述

  • 数据集:CIFAR-10
  • 模型:MobileNetV2
  • 目标:
    • 使用 PTQ 进行 INT8 量化
    • 使用 QAT 进行优化

3.2 加载预训练模型

import torch
import torchvision.models as models
import torchvision.transforms as transforms
from torchvision import datasets

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载预训练的 MobileNetV2
model = models.mobilenet_v2(pretrained=True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值