ChatGPT、Claude 和 Gemini 在数据分析方面的合作(第 3 部分):机器学习的最佳 AI 助手

人工智能如何加速你的机器学习项目从特征工程到模型训练

人工智能如何加速你的机器学习项目从特征工程到模型训练 欢迎来到雲闪世界

在本文中,我们将重点介绍这些 AI 工具如何协助机器学习项目。机器学习是数据科学的基石。虽然使用 LLM 模型完全自动化建模过程具有挑战性,但这些 AI 工具仍然可以显著简化许多 ML 步骤的流程。

添加图片注释,不超过 140 字(可选)

构建机器学习模型的步骤 与如今通常可以通过 AI 工具实现自动化的 SQL 或 EDA 不同,机器学习是另一种野兽。事实上,我花了很长时间才写这篇文章,因为我一直在努力思考应该如何评估 AI 工具,以及如何确定评分标准。 退一步来说,要评估哪种 AI 工具在协助 ML 项目方面真正大放异彩,至关重要的是要了解这些工具在 ML 模型构建的关键阶段可以做什么和不能做什么。以下是机器学习的八个基本步骤: 1. 问题定义:明确定义您要解决的问题。这包括了解业务背景、目标和期望结果。

  • 人工智能辅助:有限。人工智能工具可以帮助澄清问题陈述,但如果没有人工输入,通常很难掌握复杂的业务背景。

2. 数据收集:从各种来源收集相关数据,这可能涉及访问数据库、API 或网络抓取。

  • 人工智能辅助:有限。虽然聊天机器人可能会建议数据来源,但繁重的数据收集工作通常需要人工或与团队合作。

3. 探索性数据分析 (EDA):清理和预处理数据,并分析其结构、分布和关系。这涉及诸如输入缺失值、生成可视化和进行相关性分析等任务。

  • AI 辅助:强大。AI 工具擅长生成可视化效果、提供描述性统计数据以及快速从数据中提出见解。

4.特征工程:创建新特征或转换现有特征以提高模型性能。这包括特征提取和选择。

  • AI 辅助:强大。AI 可以建议新功能,解释某些转换可能有用的原因,并自动执行某些功能工程任务。

5.模型选择:根据问题类型和数据特点选择合适的机器学习模型(例如回归、分类、聚类)。

  • AI 辅助:中等。AI 可以根据问题描述和数据推荐模型,但你可能需要进行实验才能找到最佳匹配。

6. 模型训练和评估:根据数据训练模型,并使用适当的指标评估其性能。这涉及调整超参数并通过交叉验证选择最佳模型。

  • AI 辅助:中等。AI 可以帮助生成训练脚本、建议评估指标和调整超参数,但运行代码通常需要外部执行和自动化。

7. 模型部署:将模型部署到生产环境中,以便对新数据进行预测。

  • AI 协助:有限。AI 聊天机器人可以指导您完成部署过程,但无法取代所需的实际工作。

8. 监控和维护:持续监控生产中的模型性能,根据需要重新训练,并解决随时间推移出现的任何漂移或退化。

  • 人工智能辅助:有限。虽然人工智能可能会建议使用监控工具,但持续维护是一项超出大多数人工智能工具(尤其是聊天机器人界面)能力的任务。

综上所述,AI 能够发挥最大作用的步骤是 EDA 和特征工程,并在模型选择、训练和评估方面提供一些有价值的指导。由于我们已经评估了 AI 在 EDA 中的表现,因此我们将重点介绍本文中的其余步骤。 评估机器学习中的人工智能聊天机器人 为了测试这些工具,我使用了Kaggle 的在线支付欺诈检测数据集( CC0:公共领域许可证)。欺诈检测是一种非常常见的机器学习用例,可以通过监督学习和无监督学习方法来实现。这个数据集太大,无法满足这三种工具的文件上传限制。因此,我提取了一个 0.5% 的随机样本(3181 行),欺诈率(真阳性率)为 0.2%。 我们将按照以下标准评估人工智能工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值