LLaMA系列模型

1.LLama

1.1 简介

Open and Efficient Foundation Language Models (Open但没完全Open的LLaMA)

2023年2月,Meta(原Facebook)推出了LLaMA大模型,使用了1.4T
token进行训练,虽然最大模型只有65B,但在相关评测任务上的效果可以媲美甚至超过千亿级大模型,被认为是近期开源大模型百花⻬放的开端之一,“羊驼”系列模型及其生态快速发展。

LLaMA 所采用的 Transformer 结构和细节,与标准的 Transformer 架构不同的地方包括采用了前置层归一化(Pre-
normalization)并使用RMSNorm 归一化函数
(Normalizing Function)、激活函数更换为**
SwiGLU**,并使用了旋转位置嵌入(RoP) ,整体 Transformer 架构与 GPT-2 类似。

1.2 RMSNorm归一化函数

为了使得模型训练过程更加稳定 ,GPT-2 相较于 GPT 就引入了前置层归一化方法
,将第一个层归一化移动到多头自注意力层之前,第二个层归一化也移动到了全连接层之前,同时残差连接的位置也调整到了多头自注意力层与全连接层之后。层归一化中也采用了
RMSNorm 归一化函数 。 针对输入向量 aRMSNorm 函数计算公式如下

R M S ( a ) = 1 n ∑ i = 1 n a i 2 R M S(a)=\sqrt{\frac{1}{n} \sum_{i=1}^{n}
a_{i}^{2}} RMS(a)=n1​i=1∑n​ai2​ ​

a ˉ i = a i R M S ( a ) \bar{a}{i}=\frac{a{i}}{R M S(\boldsymbol{a})}
aˉi​=RMS(a)ai​​

此外,RMSNorm 还可以引入可学习的缩放因子 g i g_i gi​ 和偏移参数 b i b_i bi​,从而得到 a ˉ i = a i RMS
⁡ ( a ) g i + b i
\bar{a}{i}=\frac{a{i}}{\operatorname{RMS}(\boldsymbol{a})} g_{i}+b_{i}
aˉi​=RMS(a)ai​​gi​+bi​。 RMSNorm 在 HuggingFace Transformer 库中代码实现如下所示:

class LlamaRMSNorm(nn.Module):
  def __init__(self, hidden_size, eps=1e-6): 
    """ 
    LlamaRMSNorm is equivalent to T5LayerNorm 
    """ 
    super().__init__() 
    self.weight = nn.Parameter(torch.ones(hidden_size)) 
    self.variance_epsilon = eps # eps 防止取倒数之后分母为 0 
  
  def forward(self, hidden_states): 
    input_dtype = hidden_states.dtype 
    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) 
    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # weight 是末尾乘的可训练参数, 即 g_i 
    
    return (self.weight * hidden_states).to(input_dtype)

1.3 SwiGLU计划函数

SwiGLU激活函数是相较于 ReLU 函数在大部分评测中都有不少提升。在 LLaMA 中全连接层 使用带有 SwiGLU 激活函数的
FFN(Position-wise Feed-Forward Network)的计算公式如下:

FFN ⁡ SwiGLU ( x , W , V , W 2 ) = SwiGLU ⁡ ( x , W , V ) W 2
\operatorname{FFN}{\text {SwiGLU }}\left(\boldsymbol{x}, \boldsymbol{W},
\boldsymbol{V},
\boldsymbol{W}
{2}\right)=\operatorname{SwiGLU}(\boldsymbol{x},
\boldsymbol{W}, \boldsymbol{V}) \boldsymbol{W}_{2} FFNSwiGLU
​(x,W,V,W2​)=SwiGLU(x,W,V)W2​

SwiGLU ⁡ ( x , W , V ) = Swish ⁡ β ( x W ) ⊗ x V
\operatorname{SwiGLU}(\boldsymbol{x}, \boldsymbol{W},
\boldsymbol{V})=\operatorname{Swish}_{\beta}(x \boldsymbol{W}) \otimes
\boldsymbol{x} \boldsymbol{V} SwiGLU(x,W,V)=Swishβ​(xW)⊗xV

Swish ⁡ β ( x ) = x σ ( β x )
\operatorname{Swish}_{\beta}(\boldsymbol{x})=\boldsymbol{x}
\sigma(\boldsymbol{\beta} \boldsymbol{x}) Swishβ​(x)=xσ(βx)

其中, σ ( x ) σ(x) σ(x) 是 Sigmoid 函数。下图给出了 Swish 激活函数在参数 β β β 不同取值下的形状。可以看 到当
β β β 趋近于 0 时,Swish 函数趋近于线性函数 y = x y = x y=x,当 β β β 趋近于无穷大时,Swish 函数趋近于
ReLU 函数, β β β 取值为 1 时,Swish 函数是光滑且非单调。在 HuggingFace 的 Transformer 库中 Swish1
函数使用 silu 函数代替。

LLaMA中直接将FFN中的ReLU替换为SwiGLU,并将维度放缩为 ( 2 / 3 ) ⋅ 4 d (2/3) ⋅ 4d (2/3)⋅4d

1.4 旋转位置嵌入(RoPE)

在位置编码上,使用旋转位置嵌入(Rotary Positional Embeddings,RoPE)代替原有的绝 对位置编码。RoPE
借助了复数的思想 ,出发点是通过绝对位置编码的方式实现相对位置编码 。其目标是通过下述运算来给 qk 添加绝对位置信息:

q ~ m = f ( q , m ) , k ~ n = f ( k , n )
\tilde{\boldsymbol{q}}{m}=f(\boldsymbol{q}, m),
\tilde{\boldsymbol{k}}
{n}=f(\boldsymbol{k}, n) q​m​=f(q,m),kn​=f(k,n)

经过上述操作后, q ~ m \tilde{\boldsymbol{q}}{m} q~​m​和 k ~ n
\tilde{\boldsymbol{k}}
{n} k~n​就带有位置m和n的绝对位置信息。

最终可以得到二维情况下用复数表示的 RoPE:

f ( q , m ) = R f ( q , m ) e i Θ f ( q , m ) = ∥ q ∥ e i ( Θ ( q ) + m θ ) =
q e i m θ f(\boldsymbol{q}, m)=R_{f}(\boldsymbol{q}, m) e^{i
\Theta_{f}(\boldsymbol{q}, m)}=|\boldsymbol{q}|
e^{i(\Theta(\boldsymbol{q})+m \theta)}=\boldsymbol{q} e^{i m \theta}
f(q,m)=Rf​(q,m)eiΘf​(q,m)=∥q∥ei(Θ(q)+mθ)=qeimθ

根据复数乘法的几何意义,上述变换实际上是对应向量旋转,所以位置向量称为“旋转式位置编 码”。还可以使用矩阵形式表示

f ( q , m ) = ( cos ⁡ m θ − sin ⁡ cos ⁡ m θ sin ⁡ m θ cos ⁡ m θ ) ( q 0 q 1 )
f(\boldsymbol{q}, m)=\left(\begin{array}{cc}\cos m \theta & -\sin \cos m
\theta \\ \sin m \theta & \cos m
\theta\end{array}\right)\left(\begin{array}{l}\boldsymbol{q}{0} \
\boldsymbol{q}
{1}\end{array}\right)
f(q,m)=(cosmθsinmθ​−sincosmθcosmθ​)(q0​q1​​)

根据内积满足线性叠加的性质,任意偶数维的 RoPE,都可以表示为二维情形的拼接,即:

f ( q , m ) = ( cos ⁡ m θ 0 − sin ⁡ m θ 0 0 0 ⋯ 0 0 sin ⁡ m θ 0 cos ⁡ m θ 0 0
0 ⋯ 0 0 0 0 cos ⁡ m θ 1 − sin ⁡ m θ 1 ⋯ 0 0 0 0 sin ⁡ m θ 1 cos ⁡ m θ 1 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ 0 0 0 0 ⋯ cos ⁡ m θ d / 2 − 1 − sin ⁡ m θ d / 2 − 1 0 0 0 0 ⋯
sin ⁡ m θ d / 2 − 1 cos ⁡ m θ d / 2 − 1 ) ⏟ R d ( q 0 q 1 q 2 q 3 ⋯ q d − 2 q
d − 1 ) f(\boldsymbol{q}, m)=\underbrace{\left(\begin{array}{ccccccc}\cos m
\theta_{0} & -\sin m \theta_{0} & 0 & 0 & \cdots & 0 & 0 \\ \sin m \theta_{0}
& \cos m \theta_{0} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos m \theta_{1} &
-\sin m \theta_{1} & \cdots & 0 & 0 \\ 0 & 0 & \sin m \theta_{1} & \cos m
\theta_{1} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \ddots &
\cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & \cos m \theta_{d / 2-1} & -\sin m
\theta_{d / 2-1} \\ 0 & 0 & 0 & 0 & \cdots & \sin m \theta_{d / 2-1} & \cos m
\theta_{d /
2-1}\end{array}\right)}{\boldsymbol{R}{d}}\left(\begin{array}{c}\boldsymbol{q}{0}
\\ \boldsymbol{q}
{1} \\ \boldsymbol{q}{2} \\ \boldsymbol{q}{3} \
\cdots \\ \boldsymbol{q}{d-2} \\ \boldsymbol{q}{d-1}\end{array}\right)
f(q,m)=Rd​
​cosmθ0​sinmθ0​00⋯00​−sinmθ0​cosmθ0​00⋯00​00cosmθ1​sinmθ1​⋯00​00−sinmθ1​cosmθ1​⋯00​⋯⋯⋯⋯⋱⋯⋯​0000⋯cosmθd/2−1​sinmθd/2−1​​0000⋯−sinmθd/2−1​cosmθd/2−1​​
​​​ ​q0​q1​q2​q3​⋯qd−2​qd−1​​ ​

RoPE 在 HuggingFace Transformer 库中代码实现如下所示:

import torch

def precompute_freqs_cis(dim: int, end: int, constant: float = 10000.0):
    '''
    计算cos和sin的值,cos值在实部,sin值在虚部,类似于 cosx+j*sinx
    :param dim: q,k,v的最后一维,一般为emb_dim/head_num
    :param end: 句长length
    :param constant: 这里指10000
    :return:
    复数计算 torch.polar(a, t)输出, a*(cos(t)+j*sin(t))
    '''
    # freqs: 计算 1/(10000^(2i/d) ),将结果作为参数theta
    # 形式化为 [theta_0, theta_1, ..., theta_(d/2-1)]
    freqs = 1.0 / (constant ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [d/2]

    # 计算m
    t = torch.arange(end, device=freqs.device)  # [length]
    # 计算m*theta
    freqs = torch.outer(t, freqs).float()  # [length, d/2]
    # freqs形式化为 [m*theta_0, m*theta_1, ..., m*theta_(d/2-1)],其中 m=0,1,...,length-1

    # 计算cos(m*theta)+j*sin(m*theta)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    # freqs_cis: [cos(m*theta_0)+j*sin(m*theta_0),  cos(m*theta_1)+j*sin(m*theta_1),), ..., cos(m*theta_(d/2-1))+j*sin(m*theta_(d/2-1))]
    # 其中j为虚数单位, m=0,1,...,length-1
    return freqs_cis # [length, d/2]

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] # (1, length, 1, d/2)
    return freqs_cis.view(*shape) # [1, length, 1, d/2]

def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor,):
    # 先将xq维度变为[bs, length, head,  d/2, 2], 利用torch.view_as_complex转变为复数
    # xq:[q0, q1, .., q(d-1)] 转变为 xq_: [q0+j*q1, q2+j*q3, ..., q(d-2)+j*q(d-1)]
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [bs, length, head, d/2]
    # 同样的,xk_:[k0+j*k1, k2+j*k3, ..., k(d-2)+j*k(d-1)]
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))

    freqs_cis = reshape_for_broadcast(freqs_cis, xq_) # [1, length, 1, d/2]
    # 下式xq_ * freqs_cis形式化输出,以第一个为例, 如下
    # (q0+j*q1)(cos(m*theta_0)+j*sin(m*theta_0)) = q0*cos(m*theta_0)-q1*sin(m*theta_0) + j*(q1*cos(m*theta_0)+q0*sin(m*theta_0))
    # 上式的实部为q0*cos(m*theta_0)-q1*sin(m*theta_0),虚部为q1*cos(m*theta_0)+q0*sin(m*theta_0)
    # 然后通过torch.view_as_real函数,取出实部和虚部,维度由[bs, length, head, d/2]变为[bs, length, head, d/2, 2],最后一维放实部与虚部
    # 最后经flatten函数将维度拉平,即[bs, length, head, d]
    # 此时xq_out形式化为 [实部0,虚部0,实部1,虚部1,..., 实部(d/2-1), 虚部(d/2-1)]
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) # [bs, length, head, d]
    # 即为新生成的q

    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

if __name__=='__main__':
    # (bs, length, head, d)
    q = torch.randn((2, 10, 12, 32))  # q=[q0, q1, .., qd-1]
    k = torch.randn((2, 10, 12, 32))
    v = torch.randn((2, 10, 12, 32))
    freqs_cis= precompute_freqs_cis(dim=32, end=10, constant= 10000.0)
    # print(freqs_cis.detach().numpy())

    q_new, k_new = apply_rotary_emb(xq=q, xk=k, freqs_cis=freqs_cis)
    print()

2.Alpaca

2.1 简介

Stanford Alpaca: An Instruction-following LLaMA Model

Alpaca是在LLaMA基础上使用52K指令数据精调的预训练模型 ,作者只用了不到600美元的成本训练出了该模型(数据$500 +
机器$100)。初步实验结果表明Alpaca可以达到与OpenAI text-davinci-003相匹敌的效果

2.2 微调方法

  1. 第一步:构造175条self-instruct 种子示例任务
  2. 第二步:基于上述种子任务,利 用text-davinci-003爬取指令数据
  3. 第三步:使用爬取下来的52K指令 数据在LLaMA上进行精调,最终 得到Alpaca

2.3 Self-instruct数据构造

首先由人工构造175条种子数据

{
  "id": "seed_task_25", 
  "name": "perfect_numbers", 
  "instruction": "Find the four smallest perfect numbers.", 
  "instances": [{ "input": "", "output": "6, 28, 496, and 8128”}], 
  "is_classification": false
}

将“爬取要求”和种子数据进行适当组合,送入textdavinci-003,要求生成类似的指令数据。要求包括:提升指令多样性、包含真实数据、字数
要求、语言要求、拒绝不合适指令等

2.4 指令数据格式

  • instruction: 描述模型需要执行的指令内容
  • input(可选): 任务上下文或输入信息,例如当指令是“对文章进行总结”,则input是文章内容
  • output: 由text-davinci-003生成的针对指令的回复

3.Llama-2

3.1 简介

Llama 2: Open Foundation and Fine-Tuned Chat Models

2023年7月,Meta推出了Llama-2开源大模型,并且推出了Llama-2-Chat对话模型

与一代LLaMA主要区别体现在更多的训练数据、更⻓的上下文窗口、GQA技术

模型结构的变动主要是体现在GQAFFN 缩放上

  • MHA改成GQA :整体参数量会有减少
  • FFN模块矩阵维度有扩充 :增强泛化能力,整体参数量增加
  • 上下文长度是llama两倍(长度从2048->4096) 训练语料增加约 40%,体现在1.4T->2.0T的Tokens llama2-34B和llama2-70B使用了GQA,加速模型训练和推理速度

3.2 GQA

GQA和MQA都是注意力的变体,其中多个查询头关注相同的键和值头,以减少推理过程中 KV 缓存的大小,并可以显著提高推理吞吐量。

MHA、GQA、MQA的区别和联系,具体的优点如下:

  • Mutil-Head Attention 因为自回归模型生成回答时,需要前面生成的KV缓存起来,来加速计算。
  • Multi-Query Attention 多个头之间可以共享KV对,因此速度上非常有优势,实验验证大约减少30-40%吞吐。
  • Group Query Attention 没有像MQA那么极端,将query分组,组内共享KV,效果接近MQA,速度上与MQA可比较。

![在这里插入图片描述](https://img-
blog.csdnimg.cn/direct/027a10b3611f449797cf68a1c53a9abb.png)

Llama-2中使用了8个KV映射,即GQA-8,GQA在多数任务上与MHA效果相当,且平均效果优于MQA;GQA和MQA均比MHA有更好的吞吐量

3.3 源码

![在这里插入图片描述](https://img-
blog.csdnimg.cn/direct/2db8157ca1724a0eb27beba85f0e89e9.png)

4.Code Llama

4.1 简介

2023年8月24日,Meta推出了面向代码的可商用大模型Code Llama,包含三个大小版本(7B/13B/34B)

支持多种编程语言,包括Python、C++、Java、PHP、Typescript (Javascript)、C#和Bash

亮点:

  • 免费供学术研究和商用
  • 支持100K上下文
  • “神秘”34B版接近GPT-4效果

4.2 模型训练流程

![在这里插入图片描述](https://img-
blog.csdnimg.cn/direct/e92ef113d4cf45c8bd16636746b13455.png)

4.3 Code Infilling Task (7B/13B only)

任务目标:根据代码的上下文,预测残缺部分的代码

方法:

  • 从完整的代码中选择一部分进行掩码(mask)并替换为<MASK>符号,构成上下文
  • 利用自回归的方法,根据上下文信息预测解码出被mask的代码部分

5.总结

LLaMA

  • 开源大模型繁荣发展的开端,一系列相关工作均基于LLaMA开展
  • 模型规模7B、13B、33B、65B满足了开发者和研究者的不同需求

Alpaca :通过少量的指令精调赋予LLaMA指令理解与执行的能力

Llama-2

  • LLaMA的二代模型,相关模型性能进一步提升,模型可商用
  • 推出官方对⻬的Chat版本模型,采用了完整的RLHF链条

Code Llama :专注于代码能力的LLaMA模型,最好的模型代码能力接近GPT-4效果,模型可商用

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享!

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享!

  • 25
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值