2024年,微控制器(MCU)技术继续迅速演进,推动电子设备向更智能、更高效和功能更丰富的方向发展。MCU不仅是智能家居、工业设备等众多产品的核心,还在推动物联网、可穿戴设备等领域的创新。
集成度进一步提升
微控制器正向集成更多功能的方向发展。例如,将无线通信、数据加密、安全启动等特性直接嵌入MCU,既降低了设计复杂性,也减少了设备的体积和能耗。对物联网(IoT)设备来说,这些功能的整合尤其关键,能够提高系统的效率和稳定性,推动智能设备的广泛应用。
典型的例子是德州仪器的SimpleLink™ MCU,该系列将无线连接和安全功能集成于一体,简化了设计并提升了设备的安全性能。
2. 能源效率提升
随着便携式设备和可穿戴设备市场的持续扩展,能源效率依然是MCU开发中的核心问题。2024年,超低功耗的MCU将成为开发者的首选,这些芯片在功耗极低的情况下仍能保持高性能,适合远程传感器和健康监测等对电池寿命要求高的应用。
STMicroelectronics的STM32L系列MCU正是超低功耗领域的佼佼者,能够显著延长设备的电池寿命,满足了对高效能耗管理的需求。
3. 安全性成为标准配置
在万物互联的时代,安全性变得至关重要。2024年的微控制器将普遍配备高级安全功能,如基于硬件的加密技术、安全启动和威胁检测能力。这对于金融交易、健康数据等涉及敏感信息的应用尤其重要,确保数据的完整性和安全性。
Microchip的SAM L10和SAM L11系列MCU就代表了这种趋势,集成了硬件加密和安全启动等功能,专为需要高安全性的应用场景而设计。
4. 处理能力提升
随着人工智能(AI)和机器学习(ML)在边缘计算中的应用增多,MCU的处理能力也随之提高。2024年,配备高频处理器、多核架构和更大内存的微控制器将成为主流。这不仅能够应对复杂的实时数据处理需求,还减少了对云计算的依赖,提升了自动驾驶、智能制造等领域的效率。
NXP的i.MX RT Crossover MCU配备高性能的Arm® Cortex®-M核心,是这一趋势的典型代表,专注于实现边缘计算的实时处理能力。
5. 微型化
微型化仍是MCU发展的重要趋势之一。随着技术的进步,制造商能够在不影响性能的情况下,将MCU尺寸缩小到适合更紧凑设备的程度。这对医疗植入物、可穿戴设备等空间受限的应用尤其关键。
例如,Microchip的PIC10F系列就是这种趋势的典型,它将高效能和小体积结合,为空间敏感型应用提供了解决方案。
6. 多样化的连接选项
随着物联网设备的普及,微控制器对多种连接选项的支持变得愈发重要。支持传统的以太网、Wi-Fi协议以及新兴的5G、NB-IoT和LoRaWAN标准,2024年MCU在连接性上的进步将推动智能家居、工业自动化等领域的发展。
Espressif的ESP32系列MCU以其广泛的连接选项和多功能性成为开发者的首选。
7. RISC-V架构崛起
开源架构RISC-V的应用在微控制器领域不断扩大。RISC-V架构允许开发者根据特定需求进行定制,不受专有指令集的限制。这种灵活性促进了MCU领域的创新,加快了新产品的上市速度。
SiFive是RISC-V领域的领先者,其产品以高能效和定制能力著称,特别适用于需要灵活性和成本效益的应用场景。
8. 汽车应用扩展
汽车行业是MCU创新的主要推动力之一。2024年,随着电动汽车和自动驾驶系统的发展,对高性能、高可靠性微控制器的需求将大幅增长。MCU不仅用于发动机控制,还广泛应用于高级驾驶辅助系统(ADAS),推动汽车智能化进程。
Infineon的AURIX™系列专为汽车应用设计,具备高性能和实时处理能力,适用于ADAS和电动汽车控制。
9. 关注可持续性
环保和可持续性已成为MCU行业的重要考虑因素。制造商在生产过程中采用环保材料和工艺,并开发低功耗MCU,以减少产品的碳足迹。随着可持续性需求的增长,这一趋势将推动更多节能型微控制器的开发。
例如,Renesas的RL78系列MCU通过低能耗设计,满足了可持续发展的市场需求。
10. 专用微控制器的兴起
2024年,针对特定应用场景的专用微控制器(ASMCU)将逐渐普及。这些MCU专为满足特定行业或应用的需求而设计,提供定制化的解决方案。无论是在智能家居、工业自动化,还是可穿戴设备领域,ASMCU都能够通过优化性能、降低功耗和减少成本,提供更具竞争力的产品。
Maxim Integrated开发的Wearable Health™ MCU就是专用微控制器的代表,为健康和健身设备提供了高效能的支持。
结论
2024年微控制器的发展趋势展示了电子行业在智能化、能源效率和定制化方面的进步。这些趋势不仅推动了消费电子、汽车、工业物联网等领域的创新,还对未来技术的发展产生了深远影响。对于工程师和开发者来说,理解这些趋势将有助于开发出更具竞争力的产品,迎接未来的挑战。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。