AI时代最吃香的6大岗位!薪资连年上涨,前景光明!
大家好,我是叶老师。最近跟不少学生和家长聊天,发现大家对未来就业方向都挺迷茫的。要说现在最火的赛道,那可不得不提AI了。我今天就给大家好好分析分析,看看AI时代哪些工作最吃香。
1.
AI算法工程师:打造AI的“大脑”
你说谁工资最高?毫无疑问是AI算法工程师。我一个学生现在在大厂做算法,刚入职就拿到了50万+的年薪,过了两年直接涨到了80万+。这可不是什么天方夜谭,而是实打实的市场行情。
AI算法工程师就像是给AI装大脑的“手术专家”,掌握机器学习、深度学习这些核心技术的人才特别受欢迎。不过这行真不是随便什么人都能干的,得有扎实的数学功底和编程能力。
2.
AI产品经理:技术与商业的“翻译官”
我给你们讲个好玩的事。
前两天遇到一个以前的学生,他从普通产品经理转型成了AI产品经理,工资一下子翻了一倍多。
为啥呢?
因为AI产品经理是连接技术和商业的桥梁,得懂技术,还得知道怎么把技术变成产品。
现在市面上一个资深AI产品经理的年薪能到60-90万,而且岗位需求量特别大。我建议有产品经验的同学可以往这个方向发展,机会多得很。
3.
数据科学家:数据时代的“黄金矿工”
数据科学家干啥的?就是在海量数据中找“金子”的。我有个朋友在银行做数据科学家,天天跟数据打交道,通过分析用户行为预测金融风险,年薪轻松过百万。
要当数据科学家,得有统计学基础,还得会用Python、R这些工具。这工作最爽的是,你做得好,公司能直接看到收益,升职加薪都快。
4.
AI系统架构师:搭建AI的“地基”
要说最难找的人才,AI系统架构师绝对排前三。这就像是盖摩天大楼,地基打得不好,楼再高也得塌。一个好的AI系统架构师年薪轻松过百万,有经验的甚至能到200万+。
这个岗位需要全面的技术功底,从底层架构到上层应用都得懂,技术积累没个5年以上还真干不了。
5.
大模型应用工程师:AI能力的“调教师”
ChatGPT火了之后,大模型应用工程师这个新岗位可太吃香了。我前两天刚帮一个学生内推,应届生开价就40万起步。他们主要负责调教和优化AI大模型,让AI变得更聪明。
想干这行,得对大模型原理、prompt工程特别熟悉。现在很多公司都在找这样的人才,机会多得是。
6.
AI安全专家:AI世界的“守护者”
最后说说AI安全专家。随着AI应用越来越广,安全问题也越来越重要。这个岗位现在可太缺人了,年薪普遍在50-100万之间。
AI安全专家要懂网络安全、数据安全、算法安全,工作挑战性很大,但是发展前景特别好。
最后我想说,选择这些AI岗位,关键是要清楚自己适合干什么。与其盲目追风口,不如找准自己的优势。技术能力强的可以往算法工程师发展,沟通协调能力好的可以考虑产品经理,总有一款适合你。
今天只要你给我的文章点赞,我私藏的大模型学习资料一样免费共享给你们,来看看有哪些东西。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。