许多數學家连论题都搞不清楚,就企图证明重大数学问题。數學證明是一個數學家最重要的工作,要證明一個數學問題,第一步就是確立一個論題,確立論題是一件非常嚴肅的事情,下麵我們看到一些數學家把確立數學論題當做兒戲,玩弄論題的荒唐事情。
(一),什麼是論題
1,論述者所主張並加以辯證的“命題”,也就是論述題目中觀點叫論題。
2,邏輯學上指真實性需要證明的“命題”。
(二),什麼是命題
1,命題必須是一句陳述句。
2,可以從命題的陳述中判斷出真假(或者說必須是一個判斷)。
3,命題必須有正確的結構。
也就是說,命題由“題設”和“結論”兩部分組成.“題設”是已知事項,“結論”是由已知事項推出的事項。換句話說就是“可以判斷真假的語句叫命題”。
(三),對命題的要求
1,科學性,就是條件和結論不違反數學基本原理。
2,明確性,敘述的“概念”“原理”“涵義”“圖形”必須清楚。数学证明中每一个概念必须做到:专一性、精确性、稳定性、可以检验性、系统性。
3,適應性,不能超出範圍(通常表現為全稱肯定判斷的謂項周延,例如後面介紹的陶哲軒的論題和分拆主項或者謂項)。
4,簡潔性。
5,如果數學論題是一個全稱肯定判斷,一經證明就是一個定理,所以數學命題主項應該是一個普遍概念或者單獨概念,不能是一個集合概念。所有的數學定理的主項都是普遍概念(例如;素數有無窮多,主項素數是一個普遍概念)或者單獨概念(例如:e是一個超越數,主項e是一個單獨概念)
6,結論不能是特稱判斷。
(四),正確論題舉例
下麵是一個正確的論題,歐幾裏得:“素數有無窮多個”。
分析:
1,這是一個陳述句。
2,這是一個明確的判斷。
3,所有的概念明確,沒有歧義。
4,結構合理,“素數”是主項,“無窮多”是謂項,
5,這是一個全稱肯定判斷,全稱判斷主項“周延”(周延就是對全部外延作了斷定)。肯定判斷謂項“不周延”,說明素數不是有限的。
(五),错误论题没有意义
1】張益唐《素數間的有界距離》《Bounded gaps between primes》數學年刊
欧几里得证明了有无穷多个素数,每一对素数之间都是有界的,没有需要证明的内容。
[大偶数表为一个素数及一个不超过二个素数的乘积之和]. 中国科学A辑.
主项与谓项都是错误的,主项(大偶数)不明确,谓项(一个素数及一个不超过二个素数乘积的和)穷尽了所有的可能即周延(肯定判断谓项不能周延)。
3】又例如:[表大偶数为一个素数及一个殆素数之和]
1975 - 王元,丁夏畦,潘承洞 - 《科学通报》(主项和谓项都是错误的)
4】再例如:[關於緊凱勒流形的裡奇曲率與復蒙日-安倍方程](邱成桐)没有谓项,狗屁不通。
5】[存在任意长的素数算数列] 陶哲轩。主项(素数算数数列是集合概念)和谓项(周延)错误
因为全称判断主项周延,肯定判断谓项不周延,“任意”就是周延了。
6】再举例一个:
大家知道,有一个著名的庞加莱猜想,这个猜想为什么狗屁不通?
1,庞加莱猜想的内容为:
任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。
2,主项与谓项
主项是【三维流形】,还有修饰限定主项的定语:单连通和闭流形。
谓项是【三维球面】。
3,主项与谓项的关系
在数学中,三维球面是一个具有三个维度的几何客体,这样的几何客体都可以归类为三维流形。
就是说,主项的内涵与外延全覆盖谓项。当主项与谓项具有同样的概念内涵和外延,,我们不是采用证明,而是采用种加属差定义的方法。
所以,将庞加莱猜想(命题)用定义方法:“三维球面就是一个单连通的-闭的三维流形”。
主项与谓项是;a,种属关系。2,是一种真包含关系。3,是传递关系。
全称判断的命题通常涉及到一个总体的所有成员都具备某项性质,如果主项包含谓项,就会以偏概全。例如“所有的学生(外延宽的)都是小学生(外延窄的)。这种命题要求对一个整体的每一个成员进行描述,而种属关系描述的是部分与整体的关系,无法准确反映全称判断的逻辑要求。因此,在逻辑推理中,种属关系不适用于全称判断的命题。
4,类似的定义:素数就是大于1并且只能被1和自身整除的自然数(定义是已经搞清楚的内容,将自然数划分为:自然数1,素数,合数)。
我们不能用命题形式:任何大于1并且只能被1和自身整除的自然数都是素数(命题是有待于证明的问题)。
5,主项表示判断句子主要说明的人或事物;谓项说明主项的动作,状态或特征-行为-属性等。
真包含关系用于判断,常常出现错误:例如“所有的学生(外延宽的)都是小学生(外延窄的)”,把本应“所有的s是p”,说成”所有的s是s的一部分“。
6,判断,必须有两个以上的不同概念;全称判断的主项与谓项必须是两个不同的概念。而庞加莱猜想的主项与谓项是同一概念的内涵。
(有一个逻辑学教师说命题:“所有的四边形都是平行四边形”,这个老师搞错了,这个不是命题,
而是主项和谓项同一个概念,一回事,只是把四边形的一个特征属性重复一次。
判断句子主项不能包含谓项。或者说命题的主项不能包含谓项。
7,数学命题的谓项一般说主项有多少或者主项是什么性质,,例如命题【素数有无穷多】素数与无穷多是全异关系;【e是超越数】在证明之前e与超越数是全异关系,因为e指自然对数的底数,是一种无理数-实数,超越是指一种属性,证明之后是种属关系。
看到没有?一个错误的句子不具备判断的功能。
全称判断的两个概念只能是全异关系,不能是真包含关系。