数学教父王晓明发现:庞加莱猜想被无知的数学家用恶搞方法“证明”

                                                             王晓明

一,庞加莱不懂语法

1,庞加莱猜想的内容为:

任何一个单连通的,闭的三维流形一定同胚于一个三维的球面。

2,主项与谓项

主项中有【三维流形】,还有修饰限定主项的定语:单连通和闭流形。

谓项中有【三维球面】。

3,庞加莱猜想的主项与谓项的关系

在数学中,三维球面是一个具有三个维度的几何客体,这样的几何客体都可以归类为三维流形。

就是说,主项的内涵与外延全覆盖谓项。

4,当主项与谓项具有同样的概念内涵和外延,我们不是采用证明,而是采用种加属差定义的方法。

所以,将庞加莱猜想(命题)用定义方法:三维球面就是一个单连通的闭流形的三维流形。

5,庞加莱猜想的主项与谓项是:a,种属关系;b,是一种真包含关系;c,是传递关系。

全称判断的命题通常涉及到一个总体的所有成员都具备某项性质,如果主项包含谓项,就会以偏概全。例如“所有的学生(外延宽的)都是小学生(外延窄的)”。这种命题要求对一个整体的每一个成员进行描述,而种属关系描述的是部分与整体的关系,无法准确反映全称判断的逻辑要求,是以偏概全。因此,在逻辑推理中,种属关系不适用于全称判断的命题‌。

6,数学中的种属关系用定义解决。类似的定义:素数就是大于1并且只能被1和自身整除的自然数(定义是已经搞清楚的内容,将自然数划分为:自然数1,素数,合数)。

我们不能用命题形式:任何大于1并且只能被1和自身整除的自然数都是素数(命题是有待于证明的问题)。

判断,必须有两个以上的不同概念;全称判断的主项与谓项必须是两个内涵完全不同的概念。而庞加莱猜想的主项与谓项是同一概念的内涵。

7,主项的功能和谓项的概念

主项表示判断句子主要说明的人或事物;谓项说明主项的动作,状态或特征-行为-属性等。

真包含关系用于判断,常常出现错误:例如“所有的学生(外延宽的)都是小学生(外延窄的)”。

庞加莱猜想就是这种错误。把本应“所有的s是p”,说成”所有的s是s的一部分“

8,判断句子主项不能包含谓项。或者说命题的主项不能包含谓项。

数学命题的谓项一般说主项有多少或者主项是什么性质,,例如命题【素数有无穷多】(主项“素数”与谓项“无穷多”是全异关系,素数是名词,无穷多是量词;又例如命题【e是超越数-或者说e具有超越性】,(主项”e“与谓项“超越性”在证明之前是全异关系,因为,e指自然对数的底数,是名词,e是一种实数;超越指一种属性,也是名词。在证明之后是交叉关系)。

9,庞加莱猜想的主项与谓项不是全异关系,而是真包含关系。庞加莱猜想是一个病句。

看到没有?一个错误的句子不具备判断的功能。

10,庞加莱猜想表达的意思用正确的方法就是:三维球面作为一个单连通的闭流形的三维流形,这种情况是唯一的。

                                         二,庞加莱猜想的证明问题

一般认为,庞加莱猜想作出巨大贡献的,主要是瑟斯顿(Thurston),他给出了几何化猜想的推论,认为三维宇宙一定由八种基本拓扑形状构成。

首先,在之前,1961年斯梅尔宣称证明了五维和五维以上成立的结论。1981年弗里德曼宣称证明了四维成立的结论。

问题1,:

什么是4维和5维?几何学家从来没有正确定义过。只有3维和3维以下有明确的文字定义和几何坐标画面定义。

有谁能够画出一个4维或者5维空间结构,并且说明是在3维结构基础上的合理解释。

至今没有!卡拉比-丘歧管纯属胡编乱造。

    其次,数学界认为,三维空间有8种构造中有7种不是单连通的,所以剩下的球形就是单连通的。

把瑟斯顿方法(用主项三维流形作为上【或者称为种概念】概念的标准统一),采用单连通作为标准划分,把所有的几何拓扑构造按照是否单连通划分,证明方法就是排除不是单连通的。

大前提:瑟斯顿三维空间有8种拓扑形式(A)。

小前提:其中7种不是单连通的(O)。

结论:所以只有球形是单连通的(i)。

这种AOI推理形式是错误的,因为三段论规则之一,前提中有否定判断,结论只能是否定判断,不能得出一个肯定判断。

第三,,为佩雷尔曼和瑟斯顿辩护者说,你的大前提不准确,应该用相容选言否定肯定式推理:

大前提:瑟斯顿8种三维空间有单连通或者非单连通

小前提:否定了7种是非单连通构造。

结论:剩下的球形就是单连通的。

第四,辩护者的推理错误。

我们说的从大范畴中找到小范畴的推理,是指大范畴内部是统一的,非矛盾的。大范畴是,小范畴肯定是。

而辩护者使用相容选言推理否定肯定式的大前提不是一个统一的大范畴,而是单连通或者非单连通,这是一种矛盾关系(全异关系)例如“金属”与“非金属”。全异关系是一种对称关系,一种反传递关系。背后还有一个问题:

主项有三重属性问题:

三维流形;单连通;“闭流形”,否定一个选言肢就不一定能够肯定一个选言肢。

因为还有“闭流形”要考虑。

(佩雷尔曼认为:证明瑟斯顿猜想必须要“闭流形或者有凸边界”; 

 2005年,Shioya和Yamaguchi修改了佩氏定理7.4的条件,宣称在无界流形条件下证明了该定理的结论)。

------------------------------------------------------------------------------------------

                                          三,证明方法问题

佩雷尔曼(Perelman)宣称完成了瑟斯顿“几何化猜想”的证明是不完全的。只有大猜想成立-小猜想才有可能成立;说是这8种构造中有7种不是单连通的,只有剩下的球形才是单连通的。首先排除了其它7种结构,再肯定剩下的球形。

       佩雷尔曼先建立一个关键的椭圆形估计,应用粗细分解,来给出瑟斯顿几何化猜测的证明。

注意:【估计】不是证明,而是不确定的或然推理。田刚也是继承丘成桐的错误思想,用“估计”代替证明,例如,2012年10月,田刚宣布解决了K-稳定Fano流形上Kähler-Einstein度量的存在性问题并给出了证明概要,关键技术途径是在锥Kähler-Einstein空间情形建立田刚早先猜测的部分连续模估计,而建立这一关键估计的主要方法是推广Cheeger-Colding-Tian有关Kähler-Einstein流形的紧化理论。

2002 年 11 月 12 日,佩雷尔曼在 arXiv.org 上公布了自己的证明,并在之后半年中又发布了两篇系列论文。这三篇文章概述了庞加莱猜想以及更一般的几何化猜想的证明,从而实现了哈密顿(Hamilton)提出的纲领。并宣称利用几何化猜想证明了庞加莱猜想。

以上的工作纯属荒唐荒谬荒诞。

                                            四,工作没有完成

1】,佩雷尔曼共发表了三篇网文(preprint),第二篇网文叙述了一个定理7.4 ,却没给出证明,只是说在下一篇preprint中给出证明。前两篇论文的目标是瑟斯顿猜想(其结果包含了庞加莱猜想)。

2】, 但是,他的'下一篇’却没有给出所预报的证明,而是给出庞加莱猜想所需的一些引理。也就是说,佩雷尔曼第二篇论文的定理7.4至今仍未有证明。

3】2002年,佩雷尔曼贴出两篇论文,其中第二篇有个定理7.4,从三个条件推导出一个结论。但佩雷尔曼随后说:“第三个条件可以去掉,具体证明将在下一篇文章中给出”。他随后到美国讲学,说这些方法证明了瑟斯顿猜想(比庞加莱猜想更大的猜想)。回到俄国后,他贴出第三篇论文,并没有前述定理7.4的证明,只有针对庞加莱猜想的几个定理。

 定理7.4是佩雷尔曼的死穴,20年过去了,证明仍没给出。

在2005年,Shioya和Yamaguchi修改了佩氏定理7.4的条件,宣称在无界流形条件下证明了该定理的结论。

佩雷尔曼对瑟氏猜想的解决思路错了,他以为只有“闭或有界”才能解决这一猜想。

佩雷尔曼的定理7.4和Shioya/Yamaguchi随后发表在学刊上的定理。Shioya/Yamaguchi证明的结果是佩雷尔曼定理的一个特例(closed manifolds)。

佩雷尔曼开了头,但做错了。他给了两个版本:

(1)用三个条件推结论——条件太多,很难应用;

(2)只用两个条件推结论,他自己至今十几年证不出来。

从两个证明之区别可以看出:

佩雷尔曼认为:证明瑟斯顿猜想必须要“闭流形或者有凸边界”;

而Shioya/Yamaguchi把此条件去了。所以,非常显然,佩氏对瑟斯顿猜想的思路错了。

佩雷尔曼所谓定理7.4

佩雷尔曼所谓定理7.4

五,朱熹平和曹怀东300多页的证明,狗屁不通,他们完全不懂什么叫证明,论文中许多“估计”,把或然判断的“估计”当成演绎推理的证明。至少可以找出几十个错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值